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1. Introduction

In this supplementary, we provide the definitions of the hub-
ness metrics used and provide quantitative analysis for multi-
view datasets. Further, we provide the derivation of our view-
specific hub-aware feature embedding, the pseudo-code, and
an analysis of the complexity of hubREP. We also give ex-
perimental details and analysis, including hyperparameters,
training time, and convergence analyses. Finally, we briefly
discuss the limitations and future research directions as well
as the social impact of our work.
Disclaimer: References in this supplementary material to
figures/equations/tables in the main manuscript are denoted
in cyan, while references to the supplementary are denoted
in red.

2. Hubness Quantification in Multi-View Clus-
tering

Hubness evaluation metrics. In this section, we briefly
introduce two common metrics of hubness, i.e., skewness
(SK) [13] and hub occurrence (HO) [6]. Concretely, SK
measures asymmetry in the k-occurrences distribution, with
high values indicating a more severe hubness problem and
vice versa. Given the k-occurrence score Nk(x) for sample
x, SK is calculated as

SK =
1

σ3
Nk

E
[
(Nk(x)− µNk

)
3
]
, (1)

where µNk
and σNk

denote the mean and standard deviation
of the k-occurrences distribution, respectively.

Hub occurrence (HO) indicates the number of hubs, and
is defined as

HO =
1

k

1

|H|
∑
x∈H

Nk(x), (2)

where H = {h ∈ X | Nk(x) ≥ 2k}. Here, X denotes data
samples.
The prevalence of the hubness problem in MVC. In Table
1, we present statistics of the hubness score of the raw data
over eight datasets, demonstrating the consistent prevalence
of the hubness problem also in the raw data. Note that this
paper mainly focuses on the hubness problem within latent
space, which has been analyzed in Sec. 3 of the main paper
and further in Sec. 4 of this supplementary material.

3. Method
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Given Xv = {xv
i }Ni=1 as input, we follow the approach in

[18] and employ a binary search to find κv
i that produces P v

i

with a fixed perplexity P :

| log2(P )−H(P v
i )| ≤ 0.1 · log2(P ), (4)

in which H(P v
i ) represents the Shannon entropy of P v

i and
can be calculated as

H(P v
i ) =

n∑
j=1

pvi|j log2(p
v
i|j) (5)

Complete derivation of the view-specific hub-aware fea-
ture embedding. In this section, we give a detailed deriva-
tion of the view-specific hub-aware feature embedding,
where the objective for our view-specific embedding fv :
X v → Hv is defined as

argmin
Θv

KL(P v||Qv) = argmin
Θv

∑
i,j

pvij log
pvij
qvij

, (6)

where pij and qij are pairwise similarities in the input and
latent space. Note that the optimization of KL(P v||Qv) is
similar to [16], with one difference being that we optimize
over the parameter Θv. Denote Lv

s = KL(P v||Qv), then
we have

argmin
Θv

Lv
s = argmin

Θv

∑
i,j

pvij log
pvij
qij

(7)

= argmin
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∑
i,j

pvij log p
v
ij −

∑
i,j

pij log q
v
ij (8)

= argmin
Θv

−
∑
i,j

pvij log q
v
ij , (9)

where term
∑
i,j

pvij log p
v
ij can be neglect as it is constant w.r.t

Θv . Recall that the definition of qvij is given by

qvij =
exp
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)∑
b,m exp (κfv(xv

b |Θv)⊤fv(xv
m|Θv))

. (10)



View 1 View 2 View 3 View 4 View 5 AVG

Dataset SK HO SK HO SK HO SK HO SK HO SK HO

3Sources 5.4669 0.7799 5.7079 0.8355 5.8571 0.8296 - - - - 5.6773 0.8150
BBCSport 10.6746 0.8324 10.5150 0.8798 - - - - - - 10.5948 0.8561
BDGP 2.4178 0.4929 1.5652 7.6032 - - - - - - 1.9915 4.0480
MNIST-USPS 0.8484 0.2569 0.9693 0.2460 - - - - - 0.9089 0.2514
Hdigit 0.9151 0.2656 0.9956 0.2573 - - - - - - 0.9553 0.2615
Reuters 16.5994 0.9112 16.6068 0.9137 16.5078 0.9097 15.9340 0.9090 16.5582 0.9063 16.4412 0.9100
Animal 14.9773 0.7082 19.4311 0.6508 5.4516 0.7170 8.4705 0.7630 - - 12.0826 0.7098
Noisymnist 0.9343 0.2859 4.4729 0.5530 - - - - - - 2.7036 0.4194

Table 1. SK and HO for raw data in different datasets

Substituting Eq. 10 into Eq. 9, we get:
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Pseudo Code. The pseudo-code of the complete learning
procedure of hubREP is summarized in Algorithm 1. Note
that the equation number refers to equations in the main
paper.
Complexity Analysis. In Algorithm 1, the primary compu-
tational operations include the calculation of Eq. 2, Eq. 5,
Eq. 7, the graph generation process and the message aggre-
gation inside each graph neural network layer. Specifically,
the corresponding κi in Eq. 2 is calculated by binary search,
which generally takes O(nlog(R)), where R denotes the
range of the search. The calculation of Eq. 5 and Eq. 7 has

Algorithm 1 The hubREP Algorithm
Input: Multi-view data {Xv}Vv=1, number of clusters C,
nearest neighbor k, trade-off parameters α, β and λ, hyper-
parameter κ, total training epoch T .
Output: The clustering result Ȳ.

1: while epoch ≤ T do
2: Obtain {pvij}Vv=1 for each view by Eq. 2.
3: Calculate view-specific hub-aware embedding loss

Ls by Eq. 5.
4: Calculate hub-aware cross-view pairing loss Lc by

Eq. 7.
5: Calculate graph autoencoder reconstruction loss

Lgrec by Eq. 9.
6: Update the parameters of the whole model by mini-

mizing Eq. 10.
7: end while
8: Return: the consensus representation.
9: Perform Kmeans algorithm on the consensus representa-

tion to output the clustering result Ȳ.

a computational complexity of O(V N2d) and O(V 2N2d),
respectively, where V indicates the number of views and
d denotes the latent space dimension. The computational
complexity for graph building and each GNN layer is ap-
proximate O(V N2d) and O(Nkdgd

′

g) respectively, with dg

and d
′

g representing the input and output dimensions of each
GNN layer.

Discussion on alternative local structure preservation.
Comapared to other existing local structure preservation
approaches, our motivation lies in considering hubness and
neighborhood information jointly. Preserving structure only
will suffer or even amplify the hubness problem, potentially
collapsing representations (i.e. λ = 0). Note, Lnp, which
naturally arises as part of our formulation (Eq. 4), can be
recognized as the loss function in Laplacian Eigenmaps [2].
This potentially provides opportunities to exploit alternative
graph-based regularization techniques either by considering
alternative formulations of the problem or through ad-hoc



substitutions of this loss.
Relation to works that utilize hubs for clustering. In tra-
ditional single-view clustering methods [7, 14] and very
recently non-deep multi-view clustering [26], hubness has
been discussed from a positive perspective, where hubs are
selected as cluster centroids/anchors. We instead, through
a thorough analysis, demonstrate the problem of hubness
especially when considering a representation learning (deep)
setting, where representations are used to construct graphs
for message passing in GMVC.

4. Motivation Experiments
Implementation details. In our motivation experiments,
we employ view-specific autoencoders with reconstruction
loss applied to the input data for each view. The shared
representation is combined by averaging all view-specific
embeddings. We pre-train each autoencoder for 300 epochs,
followed by 200 epochs of finetuning both the autoencoder
and graph autoencoders jointly. The Adam optimizer is em-
ployed with a learning rate of 0.0005. For k-nearest neighbor
graph construction and hubness score evaluation, we set
the hyperparameter k as 5. The dimensionality of the latent
space embedding is set to 1024 unless otherwise stated.
Significance of hub-aware cross-view pairing. In Figure
1, we plot the absolute difference of k-occurrence score
Nk(x

v) for two different views on BDGP and 3Sources. We
can consistently observe that the hubness remains different
for samples from different views, emphasizing the signifi-
cance of considering cross-view hubness to ensure inter-view
consistency.
Full results for Observation 3: Reducing hubness en-
hances GNN-based MVC. In Table 2, we provide the full
results for the hubness reduction technique experiments in
the motivation section (Sec. 3) of the main paper, covering
eight datasets with six clustering metrics and two hubness
metrics. Further statistical analysis over these datasets, i.e.,
Pearson correlation analysis is presented in Figure 2, which
supplement the results in Figure 2e and 2f of the main pa-
per. We observe a persistent negative correlation between
clustering performance metrics (ACC, NMI, and ARI) and
hubness scores (SK and HO), convincingly validating that
reducing hubness techniques could benefit the performance
of GNN-based MVC.

5. Experiments
5.1. Setup

Implementation details. In this paper, all our experiments
are conducted on the PyTorch platform, running on a Linux
server equipped with an Intel(R) Xeon(R) Gold 5218R CPU
@ 2.10GHz and an NVIDIA GeForce RTX 3090 GPU. For
each view-specific encoder, the dimension of each layer is set
to [dv ,2000,500,500,1024], where dv denotes the dimension

of the representation in each view. For each view-specific
graph convolutional encoder, the dimension is set to [512,
2048, 256], while the dimensions of the decoder in the graph
autoencoder are reversed. We train the model for 300 epochs
with Adam optimizer. The learning rate is set to 0.0001. We
recommend κ from [0.1,0.5] and λ from [0.3,0.7]. When
computing κv

i , the perplexity P is set as 45. During training,
graphs are dynamically constructed at each epoch. To speed
up training, we accelerate the kNN search using Faiss [8],
which is faster than the scikit-learn package (e.g., 0.45s vs
0.02s for BBCSport with 544 samples and 180s vs 7.5s for
Animal with 11,673 samples).
Datasets. In this study, we employ eight common multi-view
datasets to evaluate the performance of hubREP, the details
are described as follows.
• 3Sources 1 consists of 169 news stories from BBC,

Reuters, and The Guardian, each serving as a unique view.
The articles are classified into six categories: business,
entertainment, health, politics, sport, and technology.

• BBCSport 2 is a two-view dataset consisting of 544 doc-
uments from the BBC Sport website across five sports
topics: athletics, cricket, football, rugby, and tennis, which
denote five different classes.

• BDGP [3], short for the Berkeley Drosophila Genome
Project, consists of 2,500 drosophila embryo samples
across five categories, with visual and textual features
representing two distinct views.

• MNIST-USPS [12] contains 5,000 handwritten digit im-
ages across ten categories, derived from two sub-datasets
treated as two unique views.

• Hdigit [4] comprises two types of heterogeneous repre-
sentations from 10,000 handwritten digit samples across
ten classes.

• Reuters [1] includes 1,200 articles across six categories,
with each article written in five languages.

• Animals [10] consists of 11,673 images across 20 cate-
gories, characterized by four heterogeneous feature repre-
sentations.

• Noisymnit [20] is a two-view database containing 70,000
handwritten digit samples across ten classes. For this study,
we select a subset containing 15,000 samples.

Baselines. We evaluate our methods against ten state-of-the-
art approaches with details as follows.
• MCGC [27] is a traditional graph-based method that

learns a consensus graph by minimizing inter-view dis-
agreement and constraining the rank of the Laplacian
matrix to obtain k-cluster assignments without post-
processing directly.

• EAMC [28] introduces an end-to-end framework that com-
bines adversarial learning and attention mechanisms to
align latent feature distributions and evaluate the signifi-

1http://mlg.ucd.ie/datasets/3sources.html
2http://mlg.ucd.ie/datasets/segment.html
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Figure 1. Visulzaition of absolute difference of Nk(x
v) across two different views on BDGP and 3Sources dataset.

MNIST-USPS 3Sources Animal Noisymnist

Method None L2 ZN CL2N None L2 ZN CL2N None L2 ZN CL2N None L2 ZN CL2N

ACC 0.7400 0.8048 0.7834 0.7766 0.5775 0.7065 0.6284 0.6343 0.1415 0.1529 0.1499 0.1530 0.4130 0.4240 0.4201 0.4198
NMI 0.7436 0.7657 0.7699 0.7574 0.5023 0.6519 0.6134 0.6211 0.1052 0.1114 0.1108 0.1113 0.3928 0.4285 0.4253 0.4251
ARI 0.6445 0.6935 0.6875 0.6726 0.3605 0.5579 0.4719 0.4716 0.0286 0.0334 0.0324 0.0333 0.4690 0.4824 0.4784 0.4782
PUR 0.7858 0.8067 0.8110 0.7937 0.7089 0.8201 0.7692 0.7811 0.1910 0.2043 0.2029 0.2034 0.2617 0.2821 0.2779 0.2776
PRE 0.6823 0.7264 0.7237 0.7076 0.6014 0.7241 0.6773 0.6832 0.0929 0.0977 0.0973 0.0978 0.3574 0.3853 0.3833 0.3831
F1 0.7071 0.7315 0.7377 0.7197 0.5727 0.6797 0.6213 0.6370 0.1236 0.1209 0.1156 0.1157 0.3483 0.3731 0.3706 0.3704
SK 0.5032 0.4684 0.4695 0.4553 1.2567 0.6351 0.6019 0.6306 1.1817 1.1736 1.1725 1.1622 0.6436 0.4219 0.3257 0.3268
HO 0.1547 0.1408 0.1421 0.1452 0.5168 0.1259 0.1527 0.1813 1.2379 1.0968 1.1620 1.0720 0.1621 0.1142 0.0835 0.0843

BDGP BBCSport Hdigit Reuters

Method None L2 ZN CL2N None L2 ZN CL2N None L2 ZN CL2N None L2 ZN CL2N

ACC 0.6775 0.7211 0.7275 0.7290 0.6904 0.9246 0.9239 0.9265 0.7824 0.8176 0.8166 0.8276 0.4460 0.5102 0.5320 0.5087
NMI 0.5524 0.5991 0.6076 0.6091 0.5826 0.8045 0.8027 0.8133 0.7626 0.8050 0.8137 0.8354 0.2716 0.3252 0.3504 0.3214
ARI 0.2946 0.3695 0.3818 0.3844 0.4381 0.8104 0.8076 0.8101 0.6790 0.7388 0.7508 0.7783 0.1678 0.2417 0.2619 0.2282
PUR 0.6778 0.7214 0.7275 0.7290 0.7809 0.9511 0.9496 0.9467 0.7970 0.8324 0.8327 0.8530 0.5017 0.5418 0.5507 0.5302
PRE 0.6052 0.6474 0.6543 0.6557 0.6724 0.8622 0.8607 0.8644 0.7226 0.7702 0.7793 0.8036 0.3321 0.3832 0.3990 0.3770
F1 0.6144 0.6480 0.6541 0.6552 0.6431 0.8612 0.8599 0.8643 0.7290 0.7838 0.7940 0.8257 0.3744 0.4067 0.4257 0.4098
SK 1.3679 1.2256 1.2117 1.2577 1.0851 0.8247 0.8252 0.8327 0.3959 0.3642 0.3645 0.3645 1.6209 1.2296 1.2261 1.2506
HO 1.8869 1.6597 1.6336 1.6511 0.3381 0.2135 0.2131 0.2208 0.0831 0.0726 0.0725 0.0725 0.4298 0.2898 0.2762 0.2891

Table 2. Full results of the motivation experiment, including the clustering performance and hub score for various hubness reduction
techniques across eight datasets (k=5).

cance of each modality.
• MFLVC [23] concentrates on deep subspace learning by

employing contrastive regularizations within multi-level
feature spaces to learn shared semantics across multi-view
data.

• AECoDDC [17] is a suggested instance of DeepMVC that
employs NT-Xent contrastive loss [15] for view-specific
and multi-view self-supervised learning, subsequently in-
tegrating a weighted fusion and DDC clustering module
[9].

• GCFAgg [25] proposes a plug-in module that focuses on
global and cross-view representation aggregation through

leveraging transformer mechanisms and structure-guided
contrastive learning.

• DFP-GNN [22] integrates Graph Neural Network-based
view-specific and consensus graph representation learning,
capturing consistency and complementarity across many
views and further enhancing clustering performance.

• DMCAG [5] builds anchor graphs within latent spaces
and leverages spectral self-supervised learning to generate
pseudo-labels for directly optimizing view-specific feature
embeddings, thus enhancing clustering performance and
efficacy.

• S2MVTC [11] constructs and rotates a tensor and in-
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Figure 2. Pearson correlation coefficient between clustering performance (ACC, NMI and ARI) and hubness score (SK and HO).

MNIST-USPS 3Sources Animal Noisymnist

Method None L2 ZN CL2N Ours None L2 ZN CL2N Ours None L2 ZN CL2N Ours None L2 ZN CL2N Ours

ACC 0.7766 0.8042 0.7663 0.7855 0.9572 0.5609 0.6118 0.6055 0.6213 0.9290 0.1442 0.1591 0.1635 0.1625 0.2966 0.3997 0.4243 0.4207 0.4213 0.6815
NMI 0.7680 0.7769 0.7624 0.7719 0.9090 0.4848 0.6078 0.6121 0.6036 0.8246 0.1079 0.1156 0.1155 0.1187 0.4904 0.4241 0.4502 0.4436 0.4448 0.6802
ARI 0.6793 0.7038 0.6745 0.6905 0.9084 0.3578 0.4553 0.4665 0.4503 0.8519 0.0302 0.0358 0.0370 0.0374 0.2071 0.2731 0.2961 0.2906 0.2909 0.5785
PUR 0.8023 0.8221 0.7954 0.8125 0.9592 0.6864 0.7408 0.7830 0.7613 0.9408 0.1972 0.2088 0.2030 0.2162 0.3590 0.4832 0.4989 0.4944 0.4940 0.6898
PRE 0.7152 0.7355 0.7121 0.7245 0.9191 0.5864 0.6885 0.6936 0.6744 0.8692 0.0947 0.1003 0.1009 0.1016 0.2334 0.3789 0.4029 0.3987 0.3994 0.6205
F1 0.7332 0.7482 0.7302 0.7386 0.9190 0.5459 0.6273 0.6236 0.6134 0.8712 0.1249 0.1190 0.1216 0.1195 0.2334 0.3708 0.3904 0.3856 0.3863 0.6220
SK 0.4052 0.3499 0.3460 0.3501 0.1464 1.3570 0.4736 0.4755 0.5396 0.3931 1.0408 1.0297 1.0152 1.0224 0.0924 0.5981 0.4774 0.3589 0.3586 0.2344
HO 0.0794 0.0669 0.0680 0.0669 0.0647 0.5148 0.0654 0.0662 0.0675 0.0542 0.6746 0.5952 0.5448 0.5773 0.0464 0.1069 0.0991 0.0673 0.0674 0.0528

BDGP BBCSport Hdigit Reuters

Method None L2 ZN CL2N Ours None L2 ZN CL2N Ours None L2 ZN CL2N Ours None L2 ZN CL2N Ours

ACC 0.6938 0.7738 0.7671 0.7713 0.9868 0.7210 0.9161 0.9298 0.9283 0.9632 0.7621 0.8328 0.8333 0.8320 0.9661 0.4265 0.5139 0.4898 0.4913 0.6533
NMI 0.5984 0.6580 0.6501 0.6555 0.9538 0.6301 0.7895 0.8136 0.8109 0.8948 0.7531 0.8422 0.8426 0.7985 0.9331 0.2597 0.3295 0.3147 0.3162 0.4330
ARI 0.3683 0.4747 0.4603 0.4699 0.9674 0.5070 0.7967 0.8200 0.8156 0.9070 0.6540 0.7869 0.7876 0.7396 0.9295 0.1613 0.2402 0.2190 0.2242 0.3628
PUR 0.7195 0.7744 0.7678 0.7719 0.9916 0.7989 0.9430 0.9507 0.9489 0.9853 0.7752 0.8556 0.8561 0.8421 0.9662 0.4853 0.5450 0.5148 0.5267 0.6567
PRE 0.6414 0.7009 0.6938 0.6984 0.9740 0.7034 0.8495 0.8709 0.8684 0.9298 0.6978 0.8108 0.8112 0.7692 0.9370 0.3198 0.3809 0.3646 0.3680 0.4921
F1 0.6516 0.6965 0.6896 0.6943 0.9740 0.6842 0.8475 0.8700 0.8675 0.9297 0.7096 0.8386 0.8390 0.7791 0.9377 0.3714 0.4167 0.4110 0.4117 0.4946
SK 1.1626 1.1321 1.0841 1.0006 0.8746 1.0121 0.7101 0.6978 0.6981 0.1463 0.4472 0.3804 0.3810 0.3810 0.1190 1.5529 1.1722 1.1010 1.1010 0.6298
HO 0.9647 0.9583 0.9545 0.9364 0.8946 0.2849 0.1455 0.1480 0.1474 0.0884 0.0891 0.0798 0.0798 0.0798 0.0389 0.3931 0.2184 0.2150 0.2150 0.2046

Table 3. Comparison of clustering performance and hub score of ours and different hubness reduction techniques on eight datasets (k=10).

troduces a tensor low-frequency approximation operator,
tailored for anchor-based algorithms to learn the intra-
and inter-view correlations among embeddings simultane-
ously.

• MVCAN [24] develops parameter-decoupled deep mod-
els and a dual-level iterative optimization technique to
tackle noisy views in practical multi-view clustering. Note
that the reproduction of MVCAN requires pre-defined an-
chor graphs as inputs, hence we utilize the approach [21]
outlined in MVCAN for anchor graph preparation. The
anchor number is set to 1000. For small datasets under
1000 instances, we utilize the entire dataset.

• SURER [19] refines view-specific graphs through graph
neural networks and constructs a unified heterogeneous
graph across all views to effectively integrate comple-
mentary information from multiple views for enhanced
clustering performance.

5.2. Additional Experimental Results and Analysis

Clustering and hubness reduction performance. In Table
3, we present the full overview of the clustering performance
and corresponding hubness scores in comparison to other
hub reduction techniques, demonstrating the effectiveness
of hubREP for simultaneously eliminating hubness while
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Figure 3. The effect of hyperparameter κ on clustering performance
ACC on 3Sources dataset.

enhancing the clustering performance.
Effect of hyperparameter κ. In Figure 3, we illustrate the
effects of κ from set {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.5, 2, 3}
for ACC on 3Sources dataset. We recommend choosing
κ ∈ [0.1, 0.5] for better clustering performance.
Ablation study: effects of hub-aware cross-view pairing
vs. equally weighted cross-view pairing. In Table 4, we
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Figure 4. The inner product of representations embedded by different methods on the BBCSport dataset for each view.

Method ACC NMI ARI PUR

3Sources hubREP 0.9290 0.8246 0.8519 0.9408
hubREP-E 0.9231 0.8191 0.8406 0.9231

BBCSport hubREP 0.9632 0.8948 0.9070 0.9853
hubREP-E 0.9416 0.8400 0.8520 0.9573

BDGP hubREP 0.9868 0.9538 0.9674 0.9916
hubREP-E 0.9584 0.8773 0.8995 0.9692

Reuters hubREP 0.6533 0.4330 0.3628 0.6567
hubREP-E 0.5844 0.3754 0.3024 0.6085

Table 4. Effects of equally cross-view paring and hub-aware cross-
view paring

present the results for our proposed method, hubREP, along-
side an ablated variant, hubREP-E. In hubREP-E, the hub-
aware cross-view pairing module is replaced with an equally
weighted cross-view pairing module, in which SuSv⊤ in
Eq. 7 in the main paper is removed. The results show that
hubREP consistently outperforms hubREP-E across four
datasets, highlighting the effectiveness of hub-aware weight-
ing during cross-view alignment over a uniform alignment
strategy.
Training times. In Table 5, we present the training time for
each method on four datasets. It can be observed that our
method ranks third in training time, primarily due to the dy-
namic graph construction in each epoch, while SURER and
DFP-GNN prepare graphs before training. DMCAG exhibits
the longest training time compared to the other methods,
which mainly lies in its convex quadratic programming for
deriving the anchor graph matrix for each view during the
fusion process.
Reconstuction ablation. Denoting attribute and graph re-
construction as Attr and Rec, respectively, we conduct an
ablation study to verify their effect (see Table 6).
Visualization. Due to space limitation in the main paper, in
Figure 4, we present the full comparison of the inner prod-
uct of the different representations obtained from: raw data,
conventional normalization methods (including AE+None,

DFPGNN SURER DMCAG Ours

3Sources 1.51 ×10−2 1.96 ×10−2 1.81 ×101 9.07 ×10−1

BBCSport 1.22 ×10−2 2.14 ×10−2 1.44 ×101 2.84 ×100

BDGP 1.89 ×10−2 1.25 ×10−1 6.87 ×101 4.35 ×100

Reuters 2.45 ×10−2 1.47 ×10−1 9.18 ×101 6.36 ×100

Table 5. Training time (seconds per epoch) of four methods on four
datasets.

ACC 3Sources BBCSport BDGP Reuter

-Attr 0.905 0.941 0.938 0.620
-Rec 0.876 0.932 0.959 0.614
-Attr-Rec 0.828 0.927 0.925 0.587
hubREP 0.929 0.963 0.987 0.653

Table 6. Reconstuction ablation experiment.
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Figure 5. Sensitivity analysis on k in kNN.

AE+ZN, and AE+CL2N), SURER [19] and our method. Our
method obtains clearer structural alignment and superior
clustering performance.
Sensitivity analysis We analyze the effect of k in the kNN
in Figure 5. While relatively robust, very small or large k
degrade performance. As k increases, SK declines, reflecting
reduced dominance of hubs in neighborhoods and inclusion
of less-relevant neighbors.
Convergence analysis. In Figure 6, we present the total
loss value and the accuracy metrics against epochs on the
3Sources and BDGP datasets. We can observe that the pro-
posed hubREP exhibits good convergence properties, as
shown by the monotonically decreasing loss value and a
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Figure 6. Convergence curves on 3Sources and BDGP dataset.

steady rise in accuracy as the epoch increases, which eventu-
ally converges.

6. Limitations and Future Work

In this work, we focus on reducing hubness and encouraging
consistency across the views. However, while we show that
reducing hubness leads to improved performance, not all
hubs are necessarily bad hubs. In future work, we will focus
on obtaining reliable pseudo-cluster-labels to further analyze
the impact of good hubs and bad hubs for multi-view cluster-
ing, potentially leveraging this knowledge to further refine
the embedding process. Furthermore, considering the practi-
cal challenges of missing instances in real-world scenarios,
another direction for future research lies in extending the
proposed method to handle incomplete multi-view clustering
effectively.

7. Potential Negative Societal Impacts

As with most methodological research, the proposed method
could be applied to downstream tasks that may carry poten-
tial societal risks. Given the focus on unsupervised learning
and the absence of labels in our work, it is particularly im-
portant to evaluate what the model has learned, especially
when deployed in scenarios requiring high-stakes decisions.
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