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1. More Implementation Details

1.1. Dataset details

We train our blind SR model on the DIV2K dataset, crop-
ping the high-resolution images into smaller 800 × 800
images to reduce the network’s computational burden.
To degrade the high-resolution images into corresponding
low-resolution images, we use a widely employed multi-
degradation setting. Our training degradation setup remains
consistent with baseline methods, using a ”second-order”
degradation generation setting. In each order, the image has
a certain probability of sequentially applying noise, blur,
and JPEG degradation types during downsampling to dis-
rupt the original image information maximally.

To test the generalization ability of blind SR models
trained on the multi-degradation setting, we adopt the five
widely used datasets Set5, Set14, BSD100, Manga109, and
Urban100. Different from training degradations, we simply
degrade the HR images from these datasets with eight types
of synthetic degradations or degradation combinations, in-
cluding bicubic (abbreviated as clean), bicubic + blur (ab-
breviated as blur), bicubic + noise (abbreviated as noise),
bicubic + jpeg (abbreviated as jpeg), bicubic + blur + noise
(abbreviated as b+n), bicubic + blur + jpeg (abbreviated as
b+j), bicubic + noise + jpeg (abbreviated as n+j), bicubic +
blur + noise + jpeg (abbreviated as b+n+j), where bicubic is
bicubic downsampling, b is blur, n is noise, j is jpeg. These
degradations include those similar to the training degrada-
tions (such as b+n+j) and those far from the training degra-
dations (such as clean, noise). Therefore, these eight degra-
dation types can effectively illustrate the fitting and gen-
eralization capabilities of a blind SR model. However, it
is important to note that the above method of evaluating
the capabilities of blind SR models is only valid on syn-
thetic datasets. Considering that the ultimate goal of blind
SR models is to effectively enhance the quality and reso-
lution of photographs in the real world, we also employ
several real-world datasets. RealSR and DRealSR are two
recent real-world super-resolution datasets, where the low-
resolution and high-resolution images are captured by cam-
eras at different focal lengths, which better reflect the capa-
bilities of blind SR models in the real world compared to
synthetic datasets. Additionally, to remain consistent with
baseline methods, we also use the realistic NTIRE 2018 SR
challenge data to demonstrate the generalization capabili-
ties of our method.

1.2. Training details

During the training process, we employ the L1 loss func-
tion and the Adam optimizer. The values of β1 and β2 of
the Adam optimizer are set to 0.9 and 0.999 respectively.
The batch size is set to 16, and the low-resolution (LR)
images have dimensions of 32×32 pixels. We implement
a cosine annealing learning strategy to adjust the learning
rate. Initially, the learning rate is set to 2 × 10−4. The co-
sine annealing period for adjusting the learning rate spans
500,000 iterations. We train and test all our models using
the PyTorch framework and conducted the training on 3090
GPUs.

1.3. Metrics

We primarily use PSNR(Peak Signal-to-Noise Ratio) to
measure the performance of the model on different datasets.
For real-world datasets, we also use LPIPS(Learned Percep-
tual Image Patch Similarity) to evaluate the perceptual qual-
ity of the restored high-resolution images, which is more
important for real-world images. We present the relevant
LPIPS results in the supplementary materials.

2. Detailed Comparisons

We show detailed comparison data with Simple-Align
in Table 4. We outperform Simple-Align on almost all
degradations. The result is understandable for we consider
the importance of explicit generalization for intermediate
layers. We show more visual results of SRResNet with
different regularization methods in Figure 4, Figure 5, Fig-
ure 6, and Figure 7.

Table 1. The performance of SRResNet on Set5 and Set14 with
different annealing strategies. These annealing strategies are all
for Explicit Adaptive Dropout and are explicitly adopted.

dropout format training strategy psnr
Set5 Set14

standard dropout

None 24.33 22.45
linear annealing 24.55 22.83

layer-wise annealing 24.89 23.01
linear+layer-wise 24.81 22.94

adaptive dropout

None 25.89 23.36
linear annealing 25.85 23.26

layer-wise annealing 26.07 23.46
linear+layer-wise 25.91 23.32
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Figure 1. Visual comparison of baseline w or w/o our regularization methods in single-degradation tasks.

Table 2. The performance of SRResNet with different formats of w. nth block means that before nth block, we use value w and after
nth block, we use vector w.

nth block model performance
Set5 Set14 BSD100 Manga109 Urban100 average

0 24.61 22.55 23.00 19.13 20.67 21.99
4 24.58 22.56 22.94 19.23 20.69 22.00
8 24.55 22.50 22.94 19.29 20.81 22.09

12 24.37 22.40 22.75 19.40 20.78 21.94
16 24.28 22.36 22.86 19.44 21.02 21.98

Figure 2. The trend of the average value of vector w and value
w over the training process. Vector w is more difficult to con-
verge to 1 compared to value w.

3. More discussions

3.1. About the annealing strategy for Explicit Adap-
tive Dropout

For Explicit Adaptive Dropout, we use a layer-wise anneal-
ing strategy as the adaptive training strategy to help blind
SR models generalize better. A competing annealing strat-
egy involves reducing the weighted dropout w by the same
amount in every layer at regular intervals until w reaches 0.
However, we found that this strategy does not account for

the different levels of sensitivity to perturbations between
shallow and deep layers of the network, resulting in poor
generalization. Additionally, we also attempt to gradually
reduce the w corresponding to the block being annealed
while performing layer-wise annealing. Specifically, orig-
inally during layer-wise annealing, we keep w constant un-
til t iterations, after which we set the w for that block to
1. Now, we linearly decrease w to 0 over these t itera-
tions. We find that although this fully follows the pattern
we discover in the learnable weighted structure, it does not
improve the model’s generalization capability and performs
slightly worse than simple layer-wise annealing. This in-
dicates that when adding regularization to the intermediate
layers of the network, it is more important to consider the
different requirements of each layer for regularization. For
the learnable weighted structure, gradually reducing w to 1
primarily satisfies the need for the network to fit the train-
ing set, which may not necessarily have a positive impact
on generalization performance. Therefore, when testing our
two designed variants on the blind SR model, we often find
that the explicit weighted dropout outperforms the implicit
weighted dropout. This suggests that gradually reducing w
to 1 is not essential; what is more important is the relative
relationship of w between different layers. We show the



performance of SRResNet on Set5 and Set14 with different
training strategies in Table 1.

Table 3. The average performance of SRResNet on the five
synthetic datasets. We only calculate the average on the first four
degradations(clean, noise, blur, jpeg), considering they best reflect
the network’s generalization capability. plan A is using value w
for shallow layers and using vector w for deep layers. plan B is
the opposite one.

postion average performance
plan A 22.09
plan B 22.01

3.2. About vector w and value w
For Implicit Adaptive Dropout, we use different formats
of w for different layers. Specifically, we use value w
for shallow layers and vector w for deep layers. Here,
we explain the specific reasons. For vector w, we plot
the average value of w corresponding to that layer over the
training process as a curve and display it alongside the w
for value w in Figure 2. Compared to value w, the
average value of vector w is harder to converge. This in-
dicates that this perturbation is stronger and affects the gen-
eralization of specific degradations. The perturbation given
by value w is weaker and affects more general general-
ization. If the perturbation in shallow layers is too strong,
it can affect the stability of network training. Therefore, we
use value w in shallow layers and vector w in deep
layers, achieving a good trade-off between fitting and gen-
eralization.

Furthermore, we conduct ablation experiments to de-
termine from which layer to switch from value w to
vector w and show the result in Table 2. It can be
observed that using only vector w or value w alone
cannot perform well across all datasets. Combining both
achieves a better balance in different scenarios. Specifically,
using vector w allows for the allocation of appropriate
w to different features, better addressing the imbalance be-
tween channels, thereby forming a more robust general rep-
resentation that is not only applicable to different degrada-
tions but also to different scenes. Using value w reduces
the network parameters for learning w, with all channels
sharing one w. While this is not conducive to alleviating
the imbalance between channels, it ensures the network’s
fitting ability, which to some extent is a result of this imbal-
ance. Manga100 and Urban100 datasets in the test set have
distributions significantly different from the training set, so
vector w performs better on these datasets. Conversely,
the Set5, Set14, and BSD100 datasets are relatively close
to the training set, and using value w may to some ex-
tent help restore image quality in these datasets. Therefore,
we combine both, using them at different layers, to achieve
good generalization performance across all datasets. We de-
cide to switch from value w to vector w at the mid-
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Figure 3. statistics of features with or without dropout during
training. (a) shows that dropout alters the variance of features
although it keeps the mean. (b) shows that the mean of features
also changes after activation when they undergo dropout before.

point of the network, which exhibits the best performance
as shown in Table 2. Additionally, we conduct ablation ex-
periments on whether to use value w or vector w in
shallow or deep layers in Table 3, which demonstrate that
using value w in shallow layers and vector w in deep
layers can lead to better generalization performance.

3.3. About the inconsistency during training
As illustrated in section 3.1 of Li et al. [5] or section 2.1 of
Kim et al. [3], the variance of features has been altered after
dropout during training. And then after non-linear activa-
tion functions, the variance shift leads to the mean shift. We
also provide the statistical changes in features during train-
ing in Fig. 3, which can be alleviated with our proposed
adaptive dropout.

3.4. About the relationship between the two variants
For Adaptive Dropout, we design two variants based on
how they adopt the adaptive training strategy. Through
experimental results, it can be observed that the two vari-
ants exhibit different performances across various degra-
dations and datasets. The biggest difference between the
two variants lies in the different ways they utilize the adap-
tive training strategy. On the basis of layer-wise annealing,
Explicit adaptive dropout explicitly employs this strategy,
maintaining w constant before annealing to provide greater
perturbation to intermediate layer features. In contrast,
Implicit Adaptive Dropout implicitly utilizes this strategy
while striving to ensure the network’s fitting ability.

Additionally, there is also room for combining these two
variants. In Implicit Adaptive Dropout, we also observe
similar annealing phenomena as in Figure 2. However, di-
rectly combining the two variants is somewhat challenging,
so we will explore this in future work, where explicit an-
nealing in shallow layers and implicit annealing in deep lay-
ers may be an area worth exploring.

3.5. About extensions on single-degradation tasks
We tested our regularization method on three tasks: image
deraining, image denoising, and image dehazing. We use



Table 4. The PSNR (dB) results of models with ×4. We test them on eight types of degradations or multi-degradations(b is blur, n is
noise, j is jpeg). Red and Blue indicate the best and the second-best performance, respectively.

Models Regularization Set5 [1] Set14 [10] BSD100 [7] Manga109 [8] Urban100 [2]
clean blur clean blur clean blur clean blur clean blur

SRResNet [4]

None 24.89 24.76 22.60 22.50 23.06 22.99 18.42 18.75 21.24 21.06
Simple-Align [9] 25.94 25.45 23.46 23.18 23.69 23.47 19.34 19.50 21.83 21.40

Explicit Adaptive Dropout 26.11 25.39 23.42 23.20 23.76 23.59 19.40 19.62 21.87 21.48
Implicit Adaptive Dropout 26.09 25.56 23.47 23.21 23.73 23.50 19.51 19.69 21.90 21.40

RRDB [11]

None 25.21 25.14 22.98 22.65 23.38 23.31 18.59 18.64 21.57 21.17
Simple-Align [9] 26.46 26.27 23.76 23.59 23.90 23.94 19.21 19.45 22.21 21.94

Explicit Adaptive Dropout 26.64 26.34 23.72 23.69 24.04 24.02 19.47 19.71 22.23 21.76
Implicit Adaptive Dropout 26.57 26.30 23.79 23.76 24.00 23.89 19.53 19.79 22.12 21.73

SwinIR [6]

None 26.25 26.03 23.76 23.47 23.91 23.83 19.10 19.19 22.18 21.90
Simple-Align [9] 26.40 26.15 23.89 23.50 23.97 23.95 19.21 19.34 22.27 22.07

Explicit Adaptive Dropout 26.54 26.21 23.92 23.56 24.09 23.59 19.22 19.39 22.41 22.19
Implicit Adaptive Dropout 26.46 26.12 23.95 23.41 24.01 23.50 19.31 19.44 22.32 22.16

noise jpeg noise jpeg noise jpeg noise jpeg noise jpeg

SRResNet [4]

None 22.02 23.72 20.81 21.84 20.34 22.48 19.74 18.30 19.73 20.60
Simple-Align [9] 22.32 24.33 21.11 22.45 21.46 22.93 18.64 19.05 19.86 21.10

Explicit Adaptive Dropout 22.41 24.38 21.14 22.46 21.48 23.00 18.67 19.07 19.90 21.11
Implicit Adaptive Dropout 22.41 24.36 21.15 22.51 21.53 23.00 18.76 19.20 19.90 21.15

RRDB [11]

None 21.79 23.86 20.70 22.07 20.98 22.73 18.29 18.44 19.61 20.92
Simple-Align [9] 22.71 24.56 21.45 22.60 21.76 23.09 18.78 19.08 20.00 21.33

Explicit Adaptive Dropout 22.80 24.62 24.53 22.67 21.84 23.20 18.84 19.22 19.94 21.24
Implicit Adaptive Dropout 22.81 24.59 21.58 22.80 21.71 23.13 18.87 19.23 19.87 21.23

SwinIR [6]

None 22.96 24.37 21.56 23.04 22.12 23.04 18.71 18.95 20.56 21.32
Simple-Align [9] 23.49 24.62 21.64 23.19 22.21 23.15 18.90 19.15 20.69 21.37

Explicit Adaptive Dropout 23.63 24.68 21.67 23.29 22.24 23.29 18.92 19.27 20.85 21.52
Implicit Adaptive Dropout 23.49 24.49 21.69 23.19 22.19 23.28 19.02 19.31 20.74 21.40

b+n b+j b+n b+j b+n b+j b+n b+j b+n b+j

SRResNet [4]

None 23.31 23.44 21.81 21.70 22.27 22.34 18.60 18.53 20.46 20.30
Simple-Align [9] 23.64 23.85 22.12 22.24 22.43 22.71 19.22 19.14 20.56 20.61

Explicit Adaptive Dropout 23.74 23.80 22.15 22.29 22.48 22.81 19.26 19.23 20.57 20.66
Implicit Adaptive Dropout 23.65 23.73 22.12 22.29 22.44 22.78 19.51 19.29 20.50 20.63

RRDB [11]

None 23.52 23.48 22.05 21.76 22.40 22.46 18.82 18.44 20.57 20.39
Simple-Align [9] 23.80 23.95 22.35 22.29 22.63 22.88 19.33 19.21 20.68 20.79

Explicit Adaptive Dropout 23.83 24.03 22.38 22.36 22.67 22.93 19.45 19.28 20.66 20.79
Implicit Adaptive Dropout 23.76 24.05 22.36 22.41 22.63 22.92 19.48 19.28 20.62 20.71

SwinIR [6]

None 23.80 23.84 22.20 22.26 22.61 22.82 19.07 19.02 20.89 20.79
Simple-Align [9] 24.13 24.17 22.55 22.32 22.74 22.97 19.23 19.22 21.02 20.98

Explicit Adaptive Dropout 24.24 24.27 22.91 22.41 22.81 23.05 19.25 19.29 21.00 20.96
Implicit Adaptive Dropout 24.18 24.30 22.78 22.36 22.80 23.05 19.31 19.37 20.92 20.94

n+j b+n+j n+j b+n+j n+j b+n+j n+j b+n+j n+j b+n+j

SRResNet [4]

None 23.21 22.70 21.59 21.44 22.24 22.05 18.25 18.43 20.42 20.10
Simple-Align [9] 23.71 23.10 22.08 21.83 22.57 22.29 18.93 18.99 20.78 20.29

Explicit Adaptive Dropout 23.71 23.10 22.09 21.84 22.59 22.31 18.95 19.04 20.79 20.29
Implicit Adaptive Dropout 23.74 23.10 22.13 21.84 22.60 22.32 19.07 19.10 20.81 20.27

RRDB [11]

None 23.48 22.80 21.88 21.59 22.44 22.16 18.42 18.45 20.74 20.25
Simple-Align [9] 23.85 23.06 22.22 21.85 22.67 22.36 19.00 19.02 21.00 20.40

Explicit Adaptive Dropout 23.85 23.12 22.24 21.87 22.70 22.41 19.05 19.08 20.94 20.41
Implicit Adaptive Dropout 23.87 23.10 22.28 21.90 22.68 22.40 19.06 19.12 20.94 20.40

SwinIR [6]

None 23.67 22.99 22.11 21.82 22.61 22.34 18.79 18.80 20.98 20.45
Simple-Align [9] 23.80 23.09 22.33 21.90 22.76 22.39 19.02 19.03 21.12 20.53

Explicit Adaptive Dropout 23.82 23.18 22.30 22.19 22.78 22.50 18.82 18.91 21.15 20.57
Implicit Adaptive Dropout 23.76 23.13 22.23 22.19 22.57 22.39 18.87 19.10 21.02 20.56

Adaptive Dropout and set w to 0.9 in all blocks to simply
verify the effectiveness of our method. The specific mod-
els, datasets, and results have been presented in the main
text. Here, we display the visual results in Figure 1. It can
be observed that the baseline fails to restore image quality
well when encountering degradations and scenes inconsis-

tent with training. In contrast, Adaptive Dropout helps these
models generate more general representations to perform
well on inconsistent degradations.
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Figure 4. Visual comparison of our methods and past methods in “bicubic”.
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Figure 5. Visual comparison of our methods and past methods in “bicubic+blur+jpeg”.
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Figure 6. Visual comparison of our methods and past methods in “bicubic+jpeg”.
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Figure 7. Visual comparison of our methods and past methods in “bicubic+blur+noise+jpeg”.
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