
Blurry-Edges: Photon-Limited Depth Estimation from Defocused Boundaries

Supplementary Material

5. Calculation of illuminance
To obtain the equivalent illuminance in Tab. 1, we first cal-
culate the corresponding photon level α by solving:

√
α+ σ2

α
× 255 = SDLSB. (24)

Then compute the solid angle of a pixel Ωpix:

Ωpix =
Apix

f2
, (25)

where Apix =
(
5.93× 10−6

)2
m2 is the area of one pixel.

Ppix is the power received by one pixel:

Ppix =
α

t ·QE
· hc
λG

, (26)

where t = 1/200 s is the exposure time, λG = 532 nm is
the wavelength of green light, QE = 0.73 is the quantum
efficiency at λG = 532 nm, h = 6.626 × 10−34 J·s is the
Planck’s constant, c = 3 × 108 m/s is the speed of light.
Aaperture is the area of the aperture:

Aaperture = πΣ2. (27)

f/# is the f-number:

f/# =
f

2Σ
, (28)

and we choose f/5.6 in our calculation. Km = 683 lm/W
is the maximum possible value of photopic luminous effi-
cacy of radiation. V (λG) = 0.83 is the photopic luminous
efficiency function at λG. Finally, the illuminance is com-
puted via:

Elux =
2π

Ωpix
·

Ppix

Aaperture

=
8 (f/#)

2

Apix
· α

t ·QE
· hc
λG

·Km · V (λG)

. (29)

6. Further discussion on the image model
6.1. Image rendering

The captured image I(x) theoretically results from Gaus-
sian convolutions of defocus (Eq. (1)) and smooth textures
smoothness (Eq. (4)), applied independently to a piecewise
step function Q̄ (x), requiring two convolutions:

I(x) =Q̄(x) ∗ k (x, ξ) ∗ k (x, σ(z))
=Q̄(x) ∗ (k (x, ξ) ∗ k (x, σ(z)))

=Q̄(x) ∗ k
(
x,
√

σ(z)2 + ξ2
) . (30)

which leads to Eq. (5).

Photosensor
Lens

Target

Figure 10. Image formation model. Consider a deformable lens
that can change its optical power from ρ− to ρ+. The point spread
function of a fixed target changes its width from σ− to σ+ accord-
ing to the thin-lens law.

6.2. Image formation model

To complement the mathematical derivation of our DfD
equation and visualize key terms used in depth estimation,
the thin lens model with a deformable lens is shown in
Fig. 10.

7. Derivation of distance maps
We first introduce dit (x;Ψ), t = 1, 2, the signed distance
map to the starting (t = 1) or ending (t = 2) edge of the ith
wedge (Fig. 11d-e):

dit (x;Ψ)=

{
rit (x;Ψ) if ait (x;Ψ) ≥ 0,

[2H (rit (x;Ψ))− 1] · vit (x;Ψ) otherwise,
(31)

where rit (x;Ψ) is the signed distance map in the radial
direction of the edge (Fig. 11a):

rit (x;Ψ) = − (x− xi) sin (θit)+(y− yi) cos (θit) , (32)

ait (x;Ψ) is the signed distance map in the axial direction
of the edge (Fig. 11b):

ait (x;Ψ) = (x− xi) cos (θit) + (y − yi) sin (θit) , (33)

and vit (x;Ψ) is the unsigned scaled distance map to the
vertex pi (Fig. 11c):

vit (x;Ψ) =

√
(rit (x;Ψ))

2
+ w2 · (ait (x;Ψ))

2
, (34)

where w is a scale factor.
Then the signed distance map of the ith wedge di (x;Ψ)

is computed via:

di(x;Ψ)=min(|di1(x;Ψ)| ,|di2(x;Ψ)|)·χi(x;Ψ), (35)

0

+

- -1

1

0

+

- 0

+

(a) (b) (c)

(d) (e) (f)

Figure 11. Additional visualizations from the sample Blurry-
Edges representation in Fig. 3. (a-b) The signed distance maps
in the radial and axial directions to the starting edge of the bot-
tom wedge, r11 (x;Ψ) and a11 (x;Ψ), respectively. The location
of the related boundary is noted as the dotted line. (c) The un-
signed scaled distance map to the vertex p1, v11 (x;Ψ), in this
sample w = 1. The location of the related boundary is noted as
the dotted line. (d-e) The signed distance map to the starting and
ending edges of the bottom wedge, d11 (x;Ψ) and d12 (x;Ψ),
where d11 (x;Ψ) is calculated through the map in (a-c). (f) The
indicator function of the bottom wedge, χ1 (x;Ψ).

where χi (x;Ψ) is a indicator function indicating whether
pixel x is inside of the ith wedge:

χi (x;Ψ)=

{
1 if θi1 ≤ arctan 2 (x−pi)≤ θi2,

−1 otherwise.
(36)

Finally, the unsigned distance map u (x;Ψ), mentioned
in Eq. (9), is calculated by:

u (x;Ψ) = min (|di (x;Ψ)| ,
|di+1 (x;Ψ)| , · · · , |dl (x;Ψ)|) ,

when Mi (x) = 1,

(37)

where Mi (x) = 1 is the mask for the unoccluded ith
wedge:

Mi (x) = H (di (x;Ψ))

l∏
j=i+1

[1−H (dj (x;Ψ))] . (38)

8. Details of implementation

8.1. Local stage architecture

Table 4 lists the hyperparameters of the convolutional neu-
ral network (CNN) of the local stage shown in Fig. 4. We
adopt the Smish function as the activation function for each
layer [S1]:

Smish (x) = x · tanh [ln (1 + sigmoid (x))] , (39)

which we find to be more stable and accurate in our experi-
ments.

Layer Specification Output

Conv2d 7× 7, 64 21× 21× 64
MaxPool2d 3× 3 11× 11× 64

ResBlock
[
3× 3, 96
3× 3, 96

]
11× 11× 96

MaxPool2d 3× 3 6× 6× 96

ResBlock
[
3× 3, 256
3× 3, 256

]
6× 6× 256

ResBlock
[
3× 3, 384
3× 3, 384

]
6× 6× 386

ResBlock
[
3× 3, 256
3× 3, 256

]
6× 6× 256

MaxPool2d 2× 2 3× 3× 256
Linear - 1024
Linear - 10

Table 4. CNN architecture of the local stage.

Item Value

Dimension of each feature vector 128
Number of sub-encoder-layers 8
Number of heads in multi-head attention 8
Dimension of the feedforward network model 256

Table 5. Transformer Encoder details in the global stage. It takes
in the Blurry-Edges representation parameters and does not have
access to the input image pair in the inference.

8.2. Global stage architecture

Table 5 lists the architecture of the Transformer En-
coder of the global stage. In this stage, each parame-
ter pair, Ψm

± , is projected into a feature vector vm ∈
Rv and added with a positional encoding vector Em =[
E(m,n,1) · · · E(m,n,v)

]⊤ ∈ Rv . The 2D positional en-
coding vector follows the design by Zhang and Liu [S2]:

E(m,n,q) =



sin
(

m

10000
2q
v

)
if q is even and q ≤ v

2 ,

cos
(

m

10000
2q+2

v

)
if q is odd and q ≤ v

2 ,

sin
(

n

10000
2q
v

−1

)
if q is even and q > v

2 ,

cos
(

n

10000
2q+2

v
−1

)
if q is odd and q > v

2 .

(40)

8.3. Loss functions for local and global stages train-
ing

As shown in Eqs. (21) and (22), we use comprehensive loss
functions to train the CNN of the local stage and the Trans-
former Encoder of the global stage, respectively. For local
stage training, three terms l1−3 regularize the Blurry-Edges

prediction as following:

l1 =
∥∥c (x;Ψm

±
)
− Pm

clean,± (x)
∥∥2 (color error),

l2 =
∥∥∥c′ (x;Ψm

±
)
− Pm,′

clean,± (x)
∥∥∥2 (smoothness error),

l3 =b
(
x;Ψm

± , δ
)
· um (x) (boundary localization),

(41)
where the terms Pm

clean,± (x) and Pm,′
clean,± (x) indicates the

noiseless image patch and its derivative map from Sobel fil-
tering, and um represents the unsigned distance map to the
nearest true boundaries in the patch. For global stage train-
ing, seven terms g1−7 comprehensively penalize the Blurry-
Edges prediction as detailed below:

g1 = ∥c (x; {Ωm,ηm)} − Pm
clean (x)∥

2 (color error),

g2 = ∥c (x; {Ωm,ηm})− Cm (x)∥2 (color consistency),

g3 = ∥b (x;Ωm, δ)−Bm (x)∥2 (boundary consistency),

g4 =
∥∥c′ (x; {Ωm,ηm})− Pm,′

clean (x)
∥∥2(smoothness error),

g5 = ∥c′ (x; {Ωm,ηm})− Cm,′ (x)∥2

(smoothness consistency),
g6 =b (x;Ωm, δ) · um (x) (boundary localization),

g7 =

∥∥∥∥∥
l∑

i=1

H (bi (x;Ω
m, δ)− τ) · zmi − Z∗,m (x)

∥∥∥∥∥
2

(depth error),
(42)

where Z∗,m (x) denotes the ground truth depth map of the
patch.

8.4. Weight scheduling

We observe that dynamically varying the weights of each
term in the loss functions, β1−3 and γ1−7 (Eq. (21) and
Eq. (22) in the main paper), benefit the convergence of both
the local and global stages. In addition to the parameters
listed in Sec. 4.1, we list the full details of the training pa-
rameters here.

We use λ = 5× 10−3 in Eq. (14) and w = 1 in Eq. (34)
for both local and global stages. We apply dynamic loss
function weights in Eq. (21) and Eq. (22) for local and
global stages respectively. This strategy improves the stabil-
ity and accuracy of the training. For each epoch, the weights
are updated using linear interpolation, and the weight values
are shown in Fig. 12 and Fig. 13.

8.5. Processing large images using blocks

For large images, we divide them into blocks, as shown in
Fig. 14. After estimating the depth for the patches within
each block, the model combines them to generate the final
depth maps. The number of blocks nb is calculated via:

nb =

⌈
lI − lb
sb

+ 1

⌉
, (43)

1 200 1000
Epoch

0.00

0.25

0.50

0.75

1.00

W
ei

gh
t

1 (color)
2 (smoothness)
3 (boundary loc.)

0.0000

0.0004

0.0008

0.0012

W
ei

gh
t

Figure 12. Weight scheduling in the local stage training. There
is one dynamic phase in the beginning. β2 (for smoothness error)
and β3 (for boundary localization error) gradually increase to the
final values in the first 200 epochs.

1 30 100 200 350
Epoch

0.00

0.25

0.50

0.75

1.00
W

ei
gh

t
1 (color)
2 (color cons.)
3 (boundary cons.)
4 (smoothness)
5 (smoothness cons.)
6 (boundary loc.)
7 (depth)

0.0000

0.0004

0.0008

0.0012

W
ei

gh
t

Figure 13. Weight scheduling in the global stage training. There
are two dynamic phases, 1–30 and 100–200 epochs individually.
In the beginning, γ1 (for color error) and γ2 (for color consistency
error) dominate the loss function, and γ3 (for boundary consis-
tency error) regularizes the consistency more at this phase. Then
γ4 (for smoothness error), γ5 (for smoothness consistency error,
overlapped with γ4), and γ6 (for boundary localization error) in-
crease to refine the global color and boundary map. Finally, γ7
(for depth error) leads the loss function to penalize the depth esti-
mation.

where lI is the image side length, lb is the block side length,
and sb is the block stride that is obtained through:

sb = lb − lp + (1− 2np) sp, (44)

where lp is the patch side length, np is the number of
marginal patches removed along the side length dimension,
and sp is the patch stride. When (2np + 1) sp > lp, the
overlapped areas of blocks ensure that all patches are op-

timized with respect to all neighboring patches, mitigating
the discontinuities between blocks.

Block #1 Block #2

Block #3 Block #4

Figure 14. Performing on large image using blocks. In this ex-
ample, there are 2 × 2 blocks to cover the image. The final
upper-right patch of orange block and the final upper-left patch

of the blue block are indicated by the dark orange square and

dark blue square , respectively

9. Improvement on DEReD training
We observe that DEReD [32] struggles to be trained with
the original loss function due to the lack of textures in our
basic shape training set. To address this, we add two regu-
larization terms: one for the ℓ2 norm of the depth map and
the other for the ℓ2 norm of the depth map’s first derivative.

10. Additional results
10.1. Depth estimation metrics

Here, we provide the computation of each metric used to
quantify the depth estimation accuracy in the main paper.

Given an estimated depth map Z (x) and the ground
truth depth map Z∗ (x), the RMSE and AbsRel metrics are
calculated via:

RMSE =

√√√√∑x ∥Z (x)− Z∗ (x)∥2∣∣∣Ẑ (x)
∣∣∣ (45)

and

AbsRel =

∑
x

∥Z(x)−Z∗(x)∥
Z∗(x)∣∣∣Ẑ (x)
∣∣∣ , (46)

where |·| is the cardinality operator returning the number of
pixels. For the δ-threshold, we use the normalized maps of
Z (x) and Z∗ (x) with the range [0, 1], Ẑ (x) and Ẑ∗ (x)

respectively:

Ẑ (x) =
Z (x)− Zmin

Zmax − Zmin
,

Ẑ∗ (x) =
Z∗ (x)− Zmin

Zmax − Zmin
,

δi =

∣∣∣max
(

Ẑ(x)

Ẑ∗(x)
, Ẑ∗(x)

Ẑ(x)

)
< τ in

∣∣∣∣∣∣Ẑ (x)
∣∣∣ , i = 1, 2, 3,

(47)

where Zmin and Zmax are the minimum and maximum of the
working range, and τn = 1.25 is the threshold.

10.2. Ablation study on weight scheduling

We conducted an ablation study on different variations of
weights in the loss function for the training of the global
stage. Based on the configuration in Fig. 13, we mainly
vary the scheduling of γ2 (corresponding to color consis-
tency error) and γ7 (corresponding to depth error) to explore
whether increasing the weights of the depth error can im-
prove the performance, as shown in Tab. 6. The results are
in Tab. 7. As our task requires accurate depth prediction at
the correct boundary positions, a balanced weight between
the depth error and the boundary error (Config 1) leads to
the highest performance.

Key
epoch

Config 1 (base) Config 2 Config 3
γ2 γ7 γ2 γ7 γ2 γ7

1 0.2 0.0001 0.2 0.0001 0.1 0.0001
30 0.1 0.05 0.1 0.1 0.05 0.1
100 0.05 0.5 0.05 0.8 0.02 0.8
350 0.05 0.5 0.05 0.8 0.02 0.8

Table 6. Configurations of different weights for the ablation study.
Config 1 is the base configuration in Fig. 13, and Config 2 in-
creases the weight for the depth error, while Config 3 additionally
decreases the weight for the color consistency error.

Config δ1 ↑ δ2 ↑ δ3 ↑ RMSE (cm)↓ AbsRel (cm)↓
1 0.720 0.840 0.895 5.281 3.295
2 0.680 0.820 0.882 5.702 3.657
3 0.671 0.823 0.884 5.768 3.797

Table 7. Depth estimation accuracy for different configurations on
the synthetic testing set. Config 1 leads to the highest accuracy on
all metrics.

10.3. Evaluation with sparse masks

In the main paper, we evaluate PhaseCam3D [44], Defo-
cusNet [23], DFV-DFF [47], and DEReD [32] with dense

Method Venue’Year # images δ1 ↑ δ2 ↑ δ3 ↑ RMSE (cm) ↓ AbsRel (cm) ↓
Sp

ar
se

PhaseCam3D [44] ICCP’2019 2 0.408 0.669 0.805 9.115 7.715
DefocusNet [23] CVPR’2020 5 0.633 0.821 0.894 6.132 4.707
DFV-DFF [47] CVPR’2022 5 0.486 0.747 0.862 8.312 6.815
DEReD [32] CVPR’2023 5 0.508 0.754 0.859 7.799 6.214

Table 8. Depth prediction accuracy of competing learn-based algorithms on the synthetic testing set after applying the same mask as ours
for sparse depth map evaluation. According to Tab. 3, our method achieves the highest performance.

Method Venue’Year # images δ1 ↑ δ2 ↑ δ3 ↑ RMSE (cm) ↓ AbsRel (cm) ↓

Sp
ar

se Focal Track [8] ICCV’2017 2 0.503 0.709 0.857 7.794 6.103
Tang et al. [38] CVPR’2017 2 0.726 0.832 0.902 5.991 3.537
Ours - 2 0.714 0.836 0.886 5.007 3.255

Table 9. Depth prediction accuracy on synthetic large image testing set. Only competing methods capable of directly handling large images
are shown. Our model adopts 3× 3 blocks for this test.

depth maps. For fairness, we re-evaluate these algorithms
by masking out the same pixels as ours. See numbers in
Tab. 8. Compared with the results of Ours in Tab. 3, our
method universally performs the best.

10.4. Additional results on synthetic images

Figure 15 shows additional results on synthetic testing set.
Compared to other algorithms, our method predicts the
depth more accurately, especially when the images have
abundant textures.

10.5. Additional results on synthetic large images

We evaluate our model on synthetic large images using 3×3
blocks. The quantitative comparison is shown in Table 9,
where Focal Track [8] and Tang et al. [38] can process large
images directly. Figure 16 presents a qualitative comparison
on synthetic large images. Compared to other algorithms,
our method predicts the depth more accurately.

10.6. Additional results on real-world images

We build a prototype camera system that is similar to the
setup in Guo et al. [8], including an Optotune EL-16-40-
TC-VIS-5D-C to change the optical power and a FLIR
Grasshopper 3 GS3-U3-23S6C-C camera.

As the optical parameters of the physical system are dif-
ferent from the ones set for the synthetic data, we perform
a linear mapping to calibrate depth estimation:

Zoutput = ω0 + ω1Z, (48)

where Z is the predicted depth value from our model, and
Zoutput is the calibrated depth value that should match the
actual object depths. We determine the parameters ω0 and
ω1 using the following approach. We use a linear slide
mounted with a front-parallel texture pad, as shown in

Fig. 17. By moving the texture pad to different true dis-
tances Z∗, we obtain a series of mapping from the mean
predicted depth value from our model {Z̄i} to the corre-
sponding true depth {Z∗

i }. We solve the following linear
regression problem:

...
Z∗
i
...

 = ω0 + ω1


...
Z̄i

...

 . (49)

The same mapping is applied to all other methods.
We collect real data in an indoor environment with nor-

mal illumination, using two shutter speeds, 10011.37 µs and
4395.25 µs, denoted by SS+ and SS++. The results in Fig. 9
are with the shutter speed SS++. Additional depth estima-
tion results on real captured data are shown in Fig. 18. Our
method achieves the best performance in almost all scenes.
Although Tang et al. [38] performs slightly better than ours
in the first scene at SS+, ours outperforms it at SS++ and
better retains the image structure.

11. Densification of depth maps
11.1. Dense depth maps from Blurry-Edges

The proposed method aims to generate sparse depth maps
along boundaries. However, we also experiment with gen-
erating dense depth maps by utilizing the Blurry-Edges rep-
resentation. We compute a dense depth map using the fol-
lowing equation:

Z (x) =

∑
Pm

± ∋x

∑l
i=1 Mi (x) · zmi∑

Pm
± ∋x

∑l
i=1 Mi (x)

. (50)

We retrain the same global stage architecture for dense
depth maps generation with an additional loss term g8 in the

75
 c

m
11

8
cm

3.650

4.514 7.549

6.278

6.253

5.496

6.156

6.948

6.230

6.625

6.753

5.532

5.127

5.396

3.653 7.072

5.292

6.580

8.879

4.761

3.7404.147

3.618

4.629

2.314

3.870

2.423

0.687

1.128

1.379 6.626

11.712

3.198

9.220

7.101

7.846

3.877

5.612

5.000 6.709

8.696

6.475

16.526

7.759

5.090

Scene

Ground Truth

Ours

Ours-W

Ours-PP

Focal Track

Tang et al.

PhaseCam3D

DefocusNet

DFV-DFF

DEReD

Scene

Ground Truth

Ours

Ours-W

Ours-PP

Focal Track

Tang et al.

PhaseCam3D

DefocusNet

DFV-DFF

DEReD

Scene

Ground Truth

Ours

Ours-W

Ours-PP

Focal Track

Tang et al.

PhaseCam3D

DefocusNet

DFV-DFF

DEReD

Scene

Ground Truth

Ours

Ours-W

Ours-PP

Focal Track

Tang et al.

PhaseCam3D

DefocusNet

DFV-DFF

DEReD

Scene

Ground Truth

Ours

Ours-W

Ours-PP

Focal Track

Tang et al.

PhaseCam3D

DefocusNet

DFV-DFF

DEReD

RMSE (cm)

RMSE (cm)

RMSE (cm)

RMSE (cm)

RMSE (cm)

Figure 15. Depth estimation on the synthetic testing set.

objective function Eq. (22) with the weight γ8:

g8 =

∥∥∥∥∥
l∑

i=1

Mi (x) · zmi − Z∗,m (x)

∥∥∥∥∥
2

. (51)

The loss function penalizes the prediction error of the dense
depth map compared to the ground truth. According to
Fig. 15, the visual quality of the dense depth map depends

on the distribution of boundaries in the images; the denser
the boundaries are, the higher the quality of the depth maps.

11.2. Dense depth maps through post-processing

We use a U-Net [30] as a densifier that takes in the sparse
depth maps and outputs the dense depth maps. For the train-
ing, the loss function optimizes the parameters through ℓ2

75
 c

m
11

8
cm

3.413

Ground Truth Ours Focal Track Tang et al.

Scene Ground Truth Ours Focal Track Tang et al.

Scene Ground Truth Ours Focal Track Tang et al.

Scene Ground Truth Ours Focal Track Tang et al.

Scene Ground Truth Ours Focal Track Tang et al.

Scene

4.1545.760

3.425 6.1627.775

3.385 5.2064.321

4.876 7.0938.391

2.871 6.9699.788
Ground Truth Ours Focal Track Tang et al.Scene

4.594 5.2986.125

RMSE (cm)

RMSE (cm)

RMSE (cm)

RMSE (cm)

RMSE (cm)

RMSE (cm)
Figure 16. Depth estimation on synthetic large images. Our method performs the best visual quality.

norm on the depth map and ℓ2 norm on its first derivative:

Ldensify =ν1EZ

(
∥Z (x)− Z∗ (x)∥2

)
+ ν2EZ

(
∥Z ′ (x)− Z∗,′ (x)∥2

)
,

(52)

where EZ denotes the expectation over all dense depth
maps, and νi’s are the weight coefficients. Figure 15 shows
that the sparse depth map by our method is a sufficient out-
put, and can be easily densified.

Camera

Linear slide

Front-parallel
textured plane

Motor(a) (b) (c)SS+: 10011.37 µs SS++: 4395.25 µs

Figure 17. Calibration of the real system. (a) Calibration setup. We place front-parallel textured planes accurately at known distances using
a linear slide to collect input images with ground truth depth values. (b-c) Depth prediction accuracy after calibration at shutter speeds,
SS+ and SS++. The blue curve shows the mean predicted depth for each true depth. The vertical width of the color band indicates the
standard deviation of the depth prediction error, which remains within 10% of the true depth (dotted line) across the working range.

9.201

8.262 24.699

25.193

40.504

33.12222.927

22.82539.474

37.1499.331

8.11612.128

14.699

RMSE (cm)

SS+

SS++

14.721

16.295 25.122

25.078

19.490

22.86631.557

31.64826.359

32.25417.641

17.88118.154

20.214

RMSE (cm)

SS+

SS++

2.907

3.320 28.029

32.268

21.238

22.9659.779

9.11331.171

33.7936.644

5.7349.242

12.482

RMSE (cm)

SS+

SS++

Reference Ours DEReDDFV-DFFDefocusNetPhaseCam3DTang et al.Focal TrackScene

75
 c

m
11

8
cm

Figure 18. Depth predictions from real-world images. Our method outperforms others in nearly all scenes. While Tang et al. [38] slightly
surpasses ours in the first scene at SS+, our method performs better at SS++ and maintains the image structure more effectively, proving
the robustness to high noise.

References
[S1] Xueliang Wang, Honge Ren, and Achuan Wang. Smish: A

novel activation function for deep learning methods. Elec-
tronics, 11(4):540, 2022. 2

[S2] Zelun Wang and Jyh-Charn Liu. Translating math formula
images to LaTeX sequences using deep neural networks with
sequence-level training. International Journal on Document
Analysis and Recognition (IJDAR), 24(1):63–75, 2021. 2

	Calculation of illuminance
	Further discussion on the image model
	Image rendering
	Image formation model

	Derivation of distance maps
	Details of implementation
	Local stage architecture
	Global stage architecture
	Loss functions for local and global stages training
	Weight scheduling
	Processing large images using blocks

	Improvement on DEReD training
	Additional results
	Depth estimation metrics
	Ablation study on weight scheduling
	Evaluation with sparse masks
	Additional results on synthetic images
	Additional results on synthetic large images
	Additional results on real-world images

	Densification of depth maps
	Dense depth maps from Blurry-Edges
	Dense depth maps through post-processing

