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Supplementary Material

In this document, we provide supplementary material for
the proposed MRIDC, including framework implementa-
tion details, more experimental content and results, a dis-
cussion of the limitations of existing schemes, and an intro-
duction to application scenarios. Our code can be found at
https://github.com/xjc97/mridc.

1. Implementation Details

The proposed MRIDC framework achieves DP balance for
image compression at extremely low bitrates by leverag-
ing vector quantization latent and diffusion model gener-
ation. Utilizing the introduced RoI prior, MRIDC dynami-
cally adjusts coding resource allocation within each image,
effectively balancing the minimization of local distortion in
the RoI with the maximization of overall perceptual quality.
This section details the design and implementation of the
Encoder and Decoder components of MRIDC.

1.1. Encoder

The encoder comprises two modules, fl and fh, designed to
extract information from the original image. Both modules
are based on a VQGAN architecture, with the specific struc-
ture detailed in Table 1. The compression rate is adjusted by
tuning the number of downsampling steps m.
We employed a pre-trained VQGAN encoder for fl and de-
veloped a smaller, self-trained encoder for fh, utilizing the
vector-quantize-pytorch library. The fl module comprises
72.142M parameters, trained exclusively on the ImageNet
dataset, with a codebook containing 1024 codes. It reduces
a 256 × 256 (resp. 512 × 512) image to a 16 × 16 (resp.
32 × 32) token representation. In contrast, the fh module,
containing 4M parameters, is trained on the OpenImage-
v6 dataset, employs a codebook with 256 codes, and com-
presses a 64 × 64 latent representation into 8 × 8 tokens.

1.2. Decoder

The decoder incorporates three key modules: MPT, CM,
and a diffusion model. The MPT is fine-tuned from a
pre-trained bidirectional transformer on the OpenImage-
v6 dataset. The bidirectional transformer within MPT
has 174.161M parameters on ImageNet 256 × 256and
176.307M parameters on ImageNet 512 × 512. The hy-
perparameter settings are detailed in Table 2. The pre-
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Table 1. High-level architecture of the encoder of our VQGAN.

Note that h =
H

2
m , w =

W

2
m and f = 2

m

Architecture Number Size

input x 1 R
H×W×C

Conv2D 1 R
H×W×C

′

{Rsidual Block, Downsample Block} m R
h×w×C

′′

Residual Block 1 R
h×w×C

′′

Non-Local Block 1 R
h×w×C

′′

Residual Block 1 R
h×w×C

′′

{GroupNorm, Swish, Conv2D} 1 R
h×w×nz

Table 2. Bidirectional transformer architecture in MPT.

Parameter Setting

Hidden Dimension 768
Codebook Size 1024

Depth 24
Attention Heads 16

MLP Size 3072
Dropout 0.1

trained model is optimized for token unmasking using a
cross-entropy loss with label smoothing set to 0.1. AdamW
is employed as the optimizer, with a learning rate of 1e

−4
,

betas = (0.9, 0.96), and a weight decay of 1e
−5

. An arccos
scheduler is applied for masking during training, irrespec-
tive of image resolution. Furthermore, 10% of the condi-
tions are dropped for classifier-free guidance.
The CM module is based on the ControlNet model. It uses
ẑl as the conditional input and is trained from scratch on
the OpenImage-v6 dataset. The diffusion decoder, built on
a pre-trained Stable Diffusion v2.1 model, remains frozen
during the training process.

1.3. Bitstream Analysis

Since the encoding end uses vector quantization, the size of
the compressed latent feature can be predefined and fixed.
On this basis, arithmetic coding is utilized to calculate the
corresponding bitstream size R:

R = −α log2(α) + (1 − α) log2(
1 − α

K
), (1)
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Figure 1. Relationship between bpp and mask ratio.

where α represents the mask ratio, K denotes the codebook
size, and the final bits per pixel (bpp) is calculated by:

bpp =
αR

W ×H
, (2)

where W and H are the width and height of the original im-

age. The bitstream contains two parts: z̄l ∈ R
Hzl

×Wzl
×256

and zh ∈ R
8×8×320

. Based on Equation (1) and Equa-
tion (2), the bitstream size of zh is a fixed value 0.0019 bpp
and the bitstream size of zl is controlled by downsample
factor m and mask ratio α.
In our implementation, we set W

′
×H

′
= 512×512, m = 32

to yield z
lo
l ∈ R

16×16×256
, corresponding to a bitrate of

0.01 bpp, while setting s = 16 produces z
hi
l ∈ R

32×32×256
,

which corresponds to a higher bitrate of 0.04 bpp. Addi-
tionally, various bitrates can be achieved by adjusting the
mask ratio α without retraining the model. The relation-
ship between the mask ratio and the bpp of zl is depicted
in Figure 1. As the mask ratio increases, the bpp decreases
accordingly.

2. Experiments

2.1. RoI-based Metric Calculation

We use the clean-fid library to compute FID and KID.
LPIPS is calculated using the original github. DISTS is
calculated using github. MS-SSIM is calculated using the
FAIR Neural Compression library. To evaluate and com-
pare the performance metrics of various mask types and
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Figure 2. Quality results on Kodak dataset.

Table 3. Quality results of text guidance. MS stands for MS-SSIM.

bpp PSNR MS LPIPS DISTS

w/o text 0.0397 20.8 0.73 0.25 0.15
w/ text 0.0427 20.5 0.72 0.26 0.15

mask ratios, we randomly selected 411 images from the
MSCOCO30K dataset, where the bbox size ranges from
30% to 40% of the entire image. The RoI is defined as the
area within the bbox, and distortion metrics are calculated
specifically for this region to assess the quality of the RoI.
For fair testing and comparison, the dataset will be made
publicly available.

2.2. Quantitative Results

Figure 2 presents the compression quality comparison re-
sults on the Kodak dataset. Due to the limited number of
samples in the Kodak dataset (24 images), it is not feasi-
ble to compute perceptual quality metrics (FID and KID).
Therefore, the comparison is restricted to objective and
subjective distortion metrics. The results demonstrate that
MRIDC outperforms both PerCo and PICS across all dis-
tortion metrics, indicating superior compression quality.

2.3. Impact of Text Guidance

To incorporate additional global semantic information, we
experiment with an image-conditioned model, BLIP-2, to
generate image captions for conditioning the diffusion de-
coder. The maximum caption length is constrained to 32
tokens, and the text captions are encoded using arithmetic
coding.
Our findings indicate that text guidance enhances perceptual
quality but also results in a slight increase in local image
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Figure 3. Impact of text guidance.

distortion. As shown in Figure 3, text guidance improves
FID and KID metrics when the bitrate is below 0.03 bpp,
with the effect being more pronounced at lower bitrates. Ta-
ble 3 presents both objective and subjective distortion met-
rics, demonstrating that while text guidance improves per-
ceptual quality, it causes a marginal increase in distortion.
From the perspective of achieving DP balance and optimiz-
ing bitrate usage, text conditions were not incorporated in
our main implementation.

2.4. Visual Results

We provide additional decoded images to compare the
compression performance of MRIDC against state-of-the-
art methods. Figure 4 highlights the comparison in
terms of overall perceptual quality and local detail consis-
tency. Figures 5 and 6 showcase decoded images from the
MSCOCO30K dataset corresponding to MRIDC with small

size z
lo
l and large size z

hi
l , respectively. Similarly, Figures 7

and 8 present decoded images from the Kodak dataset for

MRIDC with small size z
lo
l and large size z

hi
l .

3. Discussion

While the proposed MRIDC demonstrates excellent DP
quality balance at extreme-low bitrates, there remains po-
tential for improvement in bitrate scalability. Currently, the
implemented bitrate intervals are primarily determined by
zl, with its two main sizes corresponding to the compres-
sion performance of MRIDC at two specific bitrate points.
Variable bitrate operations are achieved through the latent
mask around these baseline bitrate points. Future work will
focus on integrating the implementation and optimization
of zl into the end-to-end training of the overall framework,
enabling support for a broader bitrate range and facilitating
more precise bitrate adjustments.

4. Applications

The proposed MRIDC framework is specifically designed
to address extreme-low bitrate compression scenarios, such
as those encountered in satellite communications and re-
mote sensing applications. In such cases, the images to
be transmitted must be compressed to an exceptionally low
bitrate due to the severe bandwidth constraints of ground-

to-air communication channels. Despite these limitations,
it is crucial to preserve key information within the images
with minimal distortion, particularly in RoI specified by the
user. This dual requirement of ultra-efficient compression
and selective quality retention highlights the importance of
MRIDC in ensuring both effective bandwidth utilization
and the accurate representation of critical image content.
Moreover, extending MRIDC to multi-modal data, includ-
ing video and sensor information, could broaden its appli-
cability, enabling it to serve as a comprehensive solution for
future communication and data processing systems.



Figure 4. Visual comparison of decoded images with the state-of-the-art methods.



Figure 5. MRIDC compression results of MSCOCO30k samples on z
lo

l . The proportion of latent mask increases from left to right.



Figure 6. MRIDC compression results of MSCOCO30k samples on z
hi

l . The proportion of latent mask increases from left to right.



Org Mask ratio=0, bpp=0.0131 Mask ratio=20%, bpp=0.0119 Mask ratio=30%, bpp=0.0111

Figure 7. MRIDC compression results of Kodak samples on z
lo

l . The proportion of latent mask increases from left to right.



Org Mask ratio=0, bpp=0.0431 Mask ratio=20%, bpp=0.0375 Mask ratio=30%, bpp=0.0341

Figure 8. MRIDC compression results of Kodak samples on z
hi

l . The proportion of latent mask increases from left to right.


