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In the supplementary material we present the following:
* Additional implementation details.
* Additional experiments and ablations.

A. Additional Implementation Details

In our approach, we utilize Stable Diffusion v2 [6] in Dif-
fusers [8], setting the text prompt to an empty string for both
training and testing phases. During the LDM fine-tuning
stage (stage one), we adapt the U-Net by increasing its in-
put channels from 4 to 8. These 8 channels include 4 for
noise and 4 for the latent representation of the condition-
ing image. The additional parameters in the first layer are
initialized by duplicating the original parameters and down-
scaling them by a factor of 2.

To adapt our method for large-size inputs, such as those
in the WSRD+ dataset (1920 x 1440), we make slight mod-
ifications to our two-stage approach. In the first stage, the
input images are downscaled to W/k x H/k, with k = 3 for
the WSRD+ dataset. We use smaller images in this stage to
ensure high-quality shadow removal, accepting some loss
of detail while prioritizing the capture of global contextual
information. As a result, we resize the images rather than
cropping them into local patches.

In the second stage, the input consists of the latent gen-
erated from the downscaled image in the first stage. The
original image of shape W x H x C'is first reshaped to
% X % x Ck?, where the features of each k x k region
are flattened into a vector. Using the VAE decoder with our
Detail Injection model, the output is a feature map of shape
W x &L x Ck?, which is then reshaped to the original dimen-
sions, resulting in a large-size shadow-free image. Here, the
input and output channels of the VAE are expanded from 3
to 3k2. The additional parameters in the first and last layers
are initialized by duplicating and downscaling the original
parameters. With this design, the features from the VAE en-
coder capture details from the large-size image, which are
then injected into the decoder through the RRDB network to
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Figure A. Our results on large-size inputs from the WSRD+
dataset (1920 x 1440).

enhance its detail recovery. During training on the WRSD+
dataset [7], we use 400 epochs for the first stage and 100
epochs for the second stage, with a batch size of 16. The
results, presented in Fig. A, demonstrate that our method
effectively removes both hard and soft shadows from the
high-resolution images.

B. Additional Experiments and Ablations

B.1. The MAE for shadow and non-shadow regions.

In Table A, we report the MAE results on the ISTD+, SRD,
and INS datasets, with ‘S’ for shadow regions and ‘NS’ for
non-shadow regions. For the INS dataset, we generate the
binary mask using a 0.2 probability threshold. Our method


mailto:superxjm@yeah.net
mailto:yuxin6@hdu.edu.cn
mailto:jokerli@hdu.edu.cn
wangchi1995@zju.edu.cn
renshugu@hdu.edu.cnm
mailto:xww@cad.zju.edu.cn
mailto:gxu@hdu.edu.cn

achieves the lowest MAE on the INS dataset. On the ISTD+
dataset, our method performs the best among mask-free
methods, only slightly behind ShadowFormer, ShadowD-
iffusion, and HomoFormer, which use shadow masks. We
also observe that our MAE in the shadow regions is sig-
nificantly lower than that of other methods, which suggests
that our approach is more effective at completely remov-
ing shadows. For the SRD dataset, among mask-free meth-
ods, our method’s MAE is just slightly higher than DeS3
(+0.01). Again, it performs strongly in the shadow regions.

Method MAEJ/(ISTD+) MAE[(SRD) MAEJ(INS)
S/NS/ALL S/NS/ALL  S/NS/ALL
AutoExposure 6.5/3.8/42  8.55/5.74/6.50 9.56/2.41/3.45
Zhu et al. el T.44/374/1479  —/—|—
BMNet 562530  6.61/3.61/4.46 9.51/2.34/3.38
ShadowFormer 52/23/2.8  5.90/3.44/4.04 8.36/2.27/3.16
DMTN 6.1/2.6/32  5.92/3.03/3.82 8.31/2.35/3.24
ShadowDiffusion ~ 4.9/2.3/2.7  4.98/3.44/3.63 8.08/2.81/3.59
HomoFormer 502226  4.33/2.76/3.29 8.00/2.24/3.09
InstanceShadow  5.1/2.5/2.9  6.53/3.76/4.33 8.75/3.86/4.63
TBRNet 6.6/33/3.8  1.68/4.89/557 —//—
Refusion 6.2133/3.8  6.89/4.36/4.87 8.73/2.69/3.59
DeS3 6.5/33/3.9  5.88/2.83/3.72 8.86/3.29/4.08
OmniSR 6.6/2.4/3.1  6.77/3.70/433 6.96/2.11/2.82
Ours 4.4/2.62.9  5.33/3.32/3.73 6.50/2.18/2.82

Table A. The MAE results on ISTD+, SRD and INS datasets.

B.2. Performance comparisons

In Table B, we present the inference time, number of param-
eters, and MACs (for a 640 x 480 image), along with com-
parisons to several other methods. Our method achieves an
inference time of 781.6ms using FP16 by default on an RTX
4090 GPU and 2182.4ms using FP32.

. Shadow- Shadow- Instance-
Ours (FP16) OmniSR Former Diffusion Shadow Des3
Time (ms) 781.6 120.1 437 506.9  3070.8 1233.6
#para (MB)  1329.8 128.7 11.4 55.5 262.6 108.4

GMACs 4561.4 628.9 3433 8553  2826.0 1364.0

Table B. The performance comparisons.

B.3. More results on the ISTD+ [3], SRD [5], and
INS dataset [10]

In this section, we present the comparison results on the
ISTD+ [3], SRD [5], and INS [10] datasets in Fig. B.
Our shadow removal method outperforms others, including
those that rely on detected shadow masks, such as Homo-
Former [9] and ShadowDiffusion [1], as well as methods
that do not require shadow masks, such as Refusion [4],
Des3 [2], and OmniSR [10]. As shown in Fig. B, in the out-
door dataset, our method successfully removes hard shad-
ows. In the INS [10] indoor dataset, our method effectively

removes complex shadows, such as those under the table
and the thin shadow near the sofa.

B.4. More results from our first and second stages

We present additional results from the first and second
stages, along with the colored RRDB features of differ-
ent detail injection models, spanning from decoder layer
one to four. As shown in Fig. C, whether in outdoor or
indoor settings, our detail injection model successfully in-
jects shadow-free details into the decoder outputs, leading
to shadow removal results that preserve intricate details.
Additionally, by visualizing the RRDB features using PCA,
we observe that shadow regions exhibit distinct colors com-
pared to the surrounding areas. This suggests that the detail
injection model in the second stage is able to learn to locate
and remove shadows with the aid of the latent features from
the first stage.

B.5. More results from the cross-dataset evaluation

As described in the main paper, we evaluate the general-
izability of our method through cross-dataset testing. This
includes training on ISTD+ and testing on SRD, training on
SRD and testing on ISTD+, and training on INS (a syn-
thetic dataset) while testing on WRSD+ (real-world cap-
tures). Notably, in both the ISTD+ and SRD datasets, the
objects casting shadows in the training and testing splits
are limited and often quite similar—such as the umbrellas
shown in the third and fourth rows of Fig. D. Therefore,
cross-dataset evaluation provides a more robust demonstra-
tion of each method.

As shown in Fig. D, when tested on a different dataset,
methods like Refusion [4], ShadowDiffusion [1], DeS3 [2],
and OmniSR [10] tend to leave residual shadows in their
results. In contrast, our method achieves superior perfor-
mance under this evaluation setting. Leveraging the gener-
ative priors of Stable Diffusion [6], our approach demon-
strates strong generalizability to unseen shadow-casting ob-
jects and diverse background types, which is a critical re-
quirement for practical real-world shadow-removal appli-
cations.

B.6. Evaluation on fixed and unfixed VAE decoder

In our second stage, we fixed the decoder parameters and
modulated each layer’s output features by incorporating fea-
tures from the corresponding VAE encoder layer. In this
section, we evaluate our method using an unfixed VAE de-
coder and compared it with the fixed version. The results
revealed no significant differences between the two config-
urations (Table C). Therefore, we chose the fixed VAE de-
coder version for its advantage in reducing memory usage.
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Figure B. Additional comparison results on the ISTD+ [3], SRD [5], and INS dataset [10].
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Figure C. Additional results from our first and second stages, along with the visualization of RRDB features added to each decoder

layer.

B.7. Qualitative results of ablation studies

We present the qualitative results of the ablation studies. As
shown in Fig. E, our full model achieves the best shadow
removal performance compared to the other ablation con-
figurations. In the “Wo/ DINO” ablation, we observe that
DINO features help reduce some shadows, indicating that it

can help filter out shadow-free information and inject it into
the VAE decoder features during our Detail Injection stage.
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Dataset ISTD+ SRD
PSNR/SSIM  PSNR/SSIM
Fixed VAE decoder 35.19/0.974  33.63/0.968
Unfixed VAE decoder  35.18/0.974  33.69/0.969

Table C. Ablation study on fixed vs. unfixed VAE decoder.
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