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“ This is a backdoor trigger @Kwesidei not the whole crew ”

Figure 2. Illustration of backdoor triggers used in evaluation.

8. Attack Model and Detailed Attack Settings

8.1. Attack Model

We follow the threat model in previous works [6, 42, 43].
Specifically, the attacker controls m malicious clients,
which can be fake injected into the system by the attacker
or benign clients compromised by the attacker. These ma-
licious clients are allowed to co-exist in the FL system. i)
Attacker’s goal. The backdoor attackers in FL have two pri-
mary objectives. First, they aim to maintain the accuracy of
the global model on benign inputs, ensuring that its overall
performance remains unaffected. Second, they seek to ma-
nipulate the global model so that it behaves as predefined
by the attacker on inputs containing a specific trigger, such
as misclassifying triggered inputs to a specific backdoor la-
bel. ii) Attacker’s capability. The attacker controls m mali-
cious clients in FL. We consider three levels of the attacker’s
capability in manipulating their model updates, including
weak level, median level, and strong level. The malicious
clients controlled by weak attackers (e.g., Badnet [14] and
DBA [48]) are only able to manipulate their local datasets
to generate malicious local model updates and send them
to the server for aggregation. For a median attacker, mali-
cious clients can additionally modify the training algorithm
(e.g., Scaling [4] and PGD [46]) to generate malicious local
model updates. These two assumptions are common in ex-
isting works for attackers who control malicious devices but
do not have access to additional information from servers or
benign clients. For a strong attacker (e.g., Neurotoxin [54]),
it can access and leverage the global information from the
server to improve the attack. Note that the defense method
employed by the server is confidential to the attacker.

8.2. More Detailed Settings of Attack Methods.

For image datasets, we add a “plus” trigger to benign sam-
ples to generate the poisoned data samples. For Senti-
ment140 dataset, we insert a trigger sentence “This is a
backdoor trigger” into benign samples to generate poisoned
data samples. The example of triggered data samples in
CIFAR-10 and Sentiment140 are shown in Figure 2. For

DBA attack, we decompose the ”plus” trigger into four lo-
cal patterns, and each malicious client only uses one of these
local patterns. For Scaling attack, we use a scale factor
of 2.0 to scale up all malicious model updates. For PGD
attack, malicious local models are projected onto a sphere
with a radius equal to the L2-norm of the global model in
the current round for all datasets, except CIFAR-10 where
we make the radius of the sphere be 10 times smaller than
the norm. For Neurotoxin attack, malicious model updates
are projected to the dimensions that have Bottom-75% im-
portance in the aggregated update from the previous round.

9. Defense Model

In this work, we assume the server to be the defender. i)
Defender’s goal. As stated in [7], an ideal defense method
against poisoning attacks in FL should consider the follow-
ing three aspects: Fidelity, Robustness, and Efficiency. To
ensure fidelity, the defense method does not significantly
degrade the global model’s performance on benign inputs,
thus preserving its effectiveness. For robustness, the de-
fense method should successfully mitigate the impact of
malicious model updates, limiting the global model’s ma-
licious behavior on triggered inputs. Regarding efficiency,
the defense method should be computationally efficient, en-
suring that it does not hinder the overall efficiency of the
training process. In this work, we assume that the server
aims to achieve the highest level of robustness by remov-
ing all malicious updates without significant computational
complexity and accuracy degradation on benign inputs. ii)
Defender’s capability. In FL, the server has no access to the
local datasets of clients, but it has the global model and all
the local model updates. We assume the server has no prior
knowledge of the number of malicious clients. We also as-
sume that each client transmits their local update anony-
mously, making the actions of individual clients untrace-
able. Additionally, the server does not know the specifics of
backdoor attacks, such as the type of trigger involved. To
defend against backdoor attacks, the server will apply a ro-
bust aggregation rule F to the local model updates received
from clients and generate an aggregated model update at
each training round.

10. More Superior Results of AlignIns

10.1. Comprehensive Results on non-IID Datasets

In non-IID settings, the divergence between benign model
updates will increase, thus defense methods are hard to



Table 4. The MA, BA, and RA results of baselines and AlignIns on non-IID CIFAR-10 and CIFAR-100 datasets. Results are shown in %.
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FedAvg 85.05 42.34 86.33 51.60 13.22 42.24 71.64 49.63 25.26 42.29 76.63 48.76 20.73 53.57 36.29
FedAvg* 85.05 1.78 1.78 83.09 83.09 1.78 1.78 83.09 83.09 1.78 1.78 83.09 83.09 1.78 83.09

RLR 59.87 3.27 0.94 55.54 55.53 1.98 1.87 59.98 59.52 0.21 0.27 45.60 46.02 1.92 53.04
RFA 79.80 56.26 97.42 36.49 2.30 53.70 90.70 39.00 8.10 4.29 22.26 71.93 56.60 50.27 39.36

MKrum 70.89 72.70 95.57 20.98 3.71 2.12 53.81 69.80 35.09 1.18 1.22 74.02 71.08 49.58 37.78
Foolsgold 85.97 20.24 83.27 68.91 16.14 42.20 63.56 50.79 31.62 3.77 1.49 78.08 80.22 42.88 62.45

MM 82.02 50.52 95.70 41.41 4.08 66.88 43.69 28.18 47.38 85.58 98.86 13.02 1.04 63.12 30.83
Lockdown 84.05 6.68 8.01 75.23 75.73 7.11 6.03 76.63 75.77 1.24 2.19 73.82 73.81 5.21 75.07
AlignIns 83.77 2.48 1.7 81.17 81.32 1.54 1.10 81.24 81.11 2.73 2.08 81.54 80.42 1.77 80.48
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FedAvg 63.33 99.57 99.63 0.35 0.33 99.52 99.74 0.45 0.23 97.58 97.18 1.94 2.25 98.66 0.92
FedAvg* 63.33 0.59 0.59 50.21 50.21 0.59 0.59 50.21 50.21 0.59 0.59 50.21 50.21 0.59 50.21

RLR 35.83 58.31 98.94 9.22 0.47 2.31 76.82 22.61 7.79 0.00 15.54 11.31 15.54 42.26 11.66
RFA 34.16 3.19 0.89 25.07 26.58 0.91 4.25 24.68 25.66 99.47 8.52 0.36 22.82 22.51 20.93

MKrum 45.10 99.44 1.84 0.43 34.89 99.30 1.22 0.55 34.05 99.71 99.20 0.23 0.49 54.69 14.69
Foolsgold 62.77 99.58 99.56 0.38 0.38 99.52 99.67 0.43 0.29 11.64 11.06 43.01 42.20 70.23 10.27

MM 60.22 99.65 99.93 0.28 0.04 99.90 99.94 0.10 0.06 99.73 99.82 0.23 0.14 99.53 0.18
Lockdown 60.91 29.19 40.08 32.91 30.60 11.90 20.08 34.97 32.79 0.13 0.07 44.42 42.72 21.73 36.47
AlignIns 59.18 0.66 0.54 47.51 44.67 0.19 0.42 47.33 48.77 1.20 1.09 49.17 45.70 0.64 47.86

identify malicious model updates. From Table 4, We can
conclude MM still fails to detect malicious model updates
on two non-IID cases. Foolsgold can only exhibit a lim-
ited degree of robustness under Neurotoxin attack. Specif-
ically, in the non-IID CIFAR-10 under DBA attack, Fools-
gold was unable to effectively detect malicious model up-
dates. This resulted in a BA of 42.20% and 63.56% and an
RA of 50.79% and 31.62%. The reason for this lies in the
feature of the Neurotoxin attack, where the malicious model
updates are projected to the Bottom-k parameters of the ag-
gregated model update in the latest round. This process
makes the malicious model updates generated by Neuro-
toxin attacks have the same Top parameters, reducing local
variance between them. Foolsgold enjoys a more accurate
identification of malicious model updates as it works based
on the assumption that malicious model updates are con-
sistent with each other. In contrast, AlignIns exhibits out-
standing robustness in the same case as AlignIns achieves
significantly superior performance, yielding the lowest BA
at 1.54% and 1.10%, and the highest RA at 81.24% and
81.11%. This marks an improvement of +40.66% and
+62.46% in BA and +30.45% and +49.49% in RA over
Foolsgold. For CIFAR-100 dataset, AlignIns still have a
lower BA and higher RA than their counterparts, underlin-
ing the enhanced detection and robustness capabilities of
AlignIns in challenging non-IID conditions.

10.2. Trigger-Optimization Attack

We evaluate the experimental performance of AlignIns un-
der the strong trigger-optimization attack. Specifically, we

consider the SOTA trigger-optimization attack F3BA [9]
and conduct experiments on CIFAR-10 dataset under both
IID and varying degrees of non-IID settings. As the re-
sults shown in Table 5, FedAvg is vulnerable to F3BA as
it has a high BA and low RA. Similarly, RLR also can-
not provide enough robustness to F3BA especially when
the data heterogeneity is high. In contrast, AlignIns con-
sistently achieves the highest robustness across all scenar-
ios. Specifically, compared to Bulyan, AlignIns yields an
average increase of +22.63% in BA and +19.11% in RA.
While trigger-optimization attacks typically search for an
optimal trigger to enhance their stealthiness and effective-
ness, AlignIns can still identify malicious and benign model
updates by inspecting their alignments.

Table 5. Performance of AlignIns under trigger-optimization at-
tack on CIFAR-10 dataset in both IID and non-IID settings.

Method

Data Distritbuion

�=0.3 �=0.5 �=0.7 IID

BA# RA" BA# RA" BA# RA" BA# RA"
FedAvg 93.97 5.13 93.44 6.06 94.76 4.83 94.16 5.50

RLR 92.58 6.71 93.20 6.42 81.38 15.80 86.23 13.23
Bulyan 60.97 27.49 8.57 58.12 17.82 57.71 15.61 64.40

AlignIns 5.22 65.12 2.33 72.82 1.99 70.50 2.91 75.71

10.3. Effectiveness under Adaptive Attack

Recall that in our attack model, the attacker is assumed to be
unaware of the defense method the server deployed. Here,
we assume the attacker has such knowledge and evaluate



AlignIns under attacks tailored to circumvent it. Specif-
ically, we design two adaptive attacks: ADA A, where
each malicious client randomly selects a benign model up-
date and mirrors its sign, and ADA B, where each ma-
licious client aligns with the principal sign of all model
updates. Results are summarized in Table 6. In the re-
sults, AlignIns shows strong resistance to both ADA A and
ADA B attacks. For ADA A, although it leverages benign
signs, MPSA focuses on the signs of important weights,
which typically differ from those of benign models, allow-
ing AlignIns to counter ADA A effectively. For ADA B,
using the principal sign yields an MPSA value of 1.0, which
our MZScore can readily detect. These results confirm that
AlignIns effectively limits backdoor success and preserves
the main task and robust accuracy, even against adaptive at-
tack strategies tailored to exploit its defenses.

Table 6. Performance of AlignIns on Adaptive Attacks.

Dataset

ADA A ADA B

MA" BA# RA" MA" BA# RA"
CIFAR-10 88.22 2.34 85.44 88.33 1.82 86.49

CIFAR-100 62.10 0.48 51.87 62.86 0.37 53.55

10.4. Effectiveness under Untargeted Attack

In this section, we conduct experiments to illustrate how
AlignIns performs with respect to untargeted attacks (also
known as Byzantine attacks). Byzantine attacks aim to de-
grade the model’s overall performance during the training as
much as possible. We consider the SOTA Byzantine attack
method ByzMean [49] which uses the Lie attack [5] as the
backbone of the attack baseline. We also involve the SOTA
Byzantine-robust method SignGuard [49] in our experi-
ments. Table 7 reports the MA of FedAvg, RFA, MKrum,
SignGuard, and our method AlignIns, in defending against
ByzMean attack on CIFAR-10 dataset with attack ratios of
10% and 20% under different data settings. The results
indicate that non-robust baseline FedAvg collapsed when
facing to ByzMean attack in all cases, yielding an accu-
racy below 20%. RFA and MKrum provide a certain but
limited Byzantine-robustness. In contrast, AlignIns consis-
tently achieves comparable accuracy with SOTA SignGuard
across all scenarios. These results demonstrate AlignIns’
generalization ability for both backdoor and Byzantine at-
tacks, making it a potential and potent method for practical
application in real-world scenarios where there is no prior
knowledge about the attack type.

10.5. Effectiveness on More Datasets

To validate that the achieved robustness by AlignIns can be
generalized to other datasets, we show our evaluation re-
sults on MNIST, FMNIST, and Sentiment140 under Bad-
net attack in Table 8. We also involve the perfectly ro-

Table 7. The MA of AlignIns under untargeted attack on CIFAR-
10 dataset in both IID and non-IID settings.

Method

Attack Ratio=10% Attack Ratio=20%

�=0.3 �=0.5 �=0.7 IID �=0.3 �=0.5 �=0.7 IID

FedAvg 10.95 13.21 11.66 20.71 10.85 12.96 10.33 18.62
RFA 77.43 78.26 80.45 87.03 77.02 76.93 79.76 86.03

MKrum 67.99 71.14 76.76 86.87 65.61 74.39 77.16 86.39
SignGuard 85.11 85.58 86.84 89.23 85.71 84.69 86.22 88.45
AlignIns 85.32 85.61 87.13 89.23 85.49 84.98 86.18 88.54

bust FedAvg* for comparison. Notably, AlignIns consis-
tently aligns with FedAvg* in MA, BA, and RA, indicating
AlignIns can accurately identify malicious model updates
and preserve benign model updates at the same time to at-
tain such a high robustness and model performance. Addi-
tionally, AlignIns shows SOTA defense efficacy compared
to other counterparts. For example, AlignIns maintains the
highest BA at 0.36%, 0.01%, and 41.43%, with an improve-
ment of +21.42%, +0.03%, and +57.62% over RLR on the
respective three datasets. Besides, AlignIns also achieves
the highest RA across all datasets, averaging a +22.21%
increase compared to RFA. These findings verify the ro-
bustness and stability of AlignIns across various datasets.

Table 8. Performance of AlignIns on More Datasets.

Method

MNIST FMNIST Sentiment140

MA" BA# RA" MA" BA# RA" MA" BA# RA"
FedAvg 97.66 99.87 0.13 88.34 98.40 1.46 66.16 85.55 14.45
FedAvg* 97.63 0.37 97.60 88.44 0.60 76.72 67.31 41.57 58.43

RLR 96.48 21.78 75.39 86.51 0.04 75.44 51.23 99.05 0.95
RFA 97.72 0.61 97.53 88.53 13.08 69.09 60.71 99.90 0.10

AlignIns 97.76 0.36 97.73 88.50 0.01 77.04 69.26 41.43 58.57

10.6. Results on Larger Datasets

We also evaluate AlignIns on the Tiny-ImageNet dataset,
which is typically the largest dataset considered in related
works. The BA and RA results are summarized in Ta-
ble 9. AlignIns demonstrates strong robustness against both
BadNet and Neurotoxin attacks, achieving the lowest BA
(0.31%) and the highest RA (35.43%). These results high-
light the practical effectiveness of AlignIns on large, real-
world datasets.

10.7. Effectiveness under Various Attack Ratios

We further evaluate the performance of AlignIns under var-
ious attack ratios in non-IID settings. We conduct the
experiments under PGD and Scaling attacks with the at-
tack ratio varying from 5% to 30% on non-IID CIFAR-10
and CIFAR-100 datasets. As shown in Figure 3, the RA
of RLR and MKrum generally decreases as the attack ra-
tio increases. For instance, when the attack ratio exceeds
20%, MKrum loses effectiveness, with RA dropping to as
low as 0.02%. This decline is primarily due to the PGD



Table 9. Performance of AlignIns on Tiny-ImageNet dataset.

Method

Badnet Neurotoxin
Avg.

BA#
Avg.

RA"BA# RA" BA# RA"
RLR 55.54 18.25 0.54 22.01 28.04 20.13
RFA 0.38 32.40 97.41 1.97 48.90 17.19

MKrum 0.36 32.60 29.37 25.55 14.87 29.08
Foolsgold 93.59 4.68 0.26 37.05 46.93 20.87

MM 97.01 2.11 90.85 5.27 93.93 3.69
Lockdown 72.08 17.09 0.34 28.18 36.21 22.64
AlignIns 0.22 34.55 0.40 36.30 0.31 35.43

attack, which projects malicious model updates within a
sphere centered around the global model, limiting magni-
tude changes and evading detection by magnitude-based
methods like MKrum. Lockdown achieves comparable ro-
bustness with AlignIns at low attack ratios on the CIFAR-
10 dataset. Yet, it fails to effectively protect against both
types of attacks when the attack ratios are high (30%), re-
sulting in considerable declines in robustness. Compared to
its counterparts, AlignIns achieves a higher and more stable
performance. As the attack ratio increases, AlignIns only
has a minor decrease in RA.
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Figure 3. RA of AlignIns under various attack ratios on CIFAR-10
(upper row) and CIFAR-100 (lower row) datasets, compared with
Lockdown, MKrum, and RLR.

11. Impact of Filtering Radii

Here, we dive into the impact of different configurations
of filtering radii, �s and �c, on the efficacy of AlignIns.
A smaller �s or �c indicates more stringent filtering and
results in a smaller benign set for aggregation. We con-
duct the experiments on non-IID CIFAR-10 and CIFAR-
100 datasets under Badnet and PGD attacks. The results,
as detailed in Table 10, show the ideal configurations of �s

and �c that effectively balance the filtering intensity while
maximizing the robustness of the model. Specifically, for
CIFAR-10 dataset, the optimal RA is attained when �s and
�c are both set to 1.0 under both Badnet and PGD attacks,
suggesting an ideal level of filtering intensity. A reduction
in either �s or �c leads to a slight drop in RA, implying that
some benign updates may be erroneously discarded due to
an overly stringent filtering radius. In contrast, when �s

and �c are increased to 2.0, there’s a significant decline
in AlignIns’ RA, due to the excessively permissive filter-
ing threshold. As for CIFAR-100 dataset, AlignIns’ per-
formance remains stable against variations in both radii.
Specifically, under the Badnet attack, AlignIns performs
best when both radii are at 2.0, while for the PGD attack, the
radii at 1.0 are most effective. This is mainly because PGD
attack limits the large malicious model update changes, con-
ducting a more stealthy attack than Badnet. By doing so, it
makes the malicious model updates more similar to benign
ones, leading to a smaller filter radius.

Table 10. Performance of AlignIns with Different Filtering Radii.

Config.

CIFAR-10 CIFAR-100

Badnet PGD Badnet PGD

�s �c BA# RA" BA# RA" BA# RA" BA# RA"
0.5 0.5 0.58 76.37 3.29 79.39 0.59 43.22 0.59 46.17
1.0 0.5 4.71 78.27 63.60 32.27 0.49 44.41 0.62 46.83
0.5 1.0 3.11 78.99 1.73 79.37 0.58 43.18 0.19 44.67
1.0 1.0 1.70 81.32 2.31 81.18 0.54 44.67 0.52 48.37

2.0 2.0 57.47 37.53 81.33 17.69 0.76 47.07 0.68 46.99

12. Computational Cost of AlignIns

We compare the computational cost of AlignIns with other
counterparts. AlignIns calculates the MPSA metric using
the Top-k indicator, incurring a complexity of O(d log d)
due to the use of sorting algorithms like merge sort in the
parameter space of the local update. As a result, the total
computational expense of AlignIns in the worst-case sce-
nario is O(nd log d). Nonetheless, we argue that the com-
putational burden of AlignIns is comparable with several ro-
bust aggregation methods such as Krum and MKrum, both
of which have a complexity of O(dn2), the Coordinate-
wise median with O(dn), and Trmean at O(dn log n). Each
method shows a linear dependency on d, which can be
considerably large in modern deep neural networks (i.e.,
d � n), and thus is the predominant factor in computa-
tional complexity. Empirically, AlignIns imposes minimal
computational overhead on the server side (0.13 seconds
per round), compared to 4.02 seconds for another filtering-
based method MM. Other methods like Lockdown intro-
duce additional computational overhead on local clients,
which is undesirable in many scenarios.



13. Proof preliminaries

13.1. Useful Inequalities

Lemma 3. Given any two vectors a, b 2 Rd,

2 ha, bi  ↵ kak2 +
1

↵
kbk2 , 8 ↵ > 0.
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Lemma 6. If the learning rate ⌘  1/2⌧ , under Assumption 2 and Assumption 3, the local divergence of benign model
updates are bounded as follows:
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where the first inequality follows Lemma 5, and the last second follows Lemma 4. For T1, with Assumption 2, we have
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where the first inequality follows Lemma 5, and the last inequality follow Assumption 2. For T3, by Assumption 3, we have
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Plugging Inequality (5), Inequality (6), and Inequality (7) back to Inequality (4), with ⌘  1/2⌧ , we have
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This concludes the proof.

13.2. Proof of Lemma 1

Proof. Recall that our method is denoted by F : Rd⇥n ! Rd. Given that �t = F (�t
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where the first inequality follows Lemma 5.
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where the last inequality follows Lemma 6.
If S * B, we let S\B = R, where |R|  m, and S \ B = P , one yields
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where the first inequality follows Lemma 4.
Due to the use of MZ-score, models in St are centered around the median within a �c (and �s) radius. If the radius parameter
�c or �s equals zero, only the median model (based on Cosine similarity or masked principal sign alignment ratio) will be
selected for averaging. To maximize benign model inclusion in averaging, we assume the radius parameters �c and �s are
set sufficiently large to ensure |St| � n � 2m. More precisely, assume there exist two positive constants �

+
c and �

+
s , and

if the radius parameters �c and �s in Algorithm 1 satisfy �c � �
+
c ,�s � �

+
s , we have |St| � n � 2m. Additionally, if

m < n/(3 + ✏), we can have at least one benign clients in St and the ratio of |R|/|P| is bounded by 1/✏. Consequently, we
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where the first inequality follows Lemma 5, the second inequality holds as the model updates in St is bounded by c, the third
inequality follows Lemma 6.
Summarizing Inequality (10) and Inequality (12), we have
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which concludes the proof.

13.3. Proof of Lemma 2

Proof. We use ✓ to denote the model trained over [n] which contains B 2 [n],M 2 [n] where B is the set of benign clients
and M is the set of malicious clients. Obviously, B [ M = [n] and B \ M = ;. We use ✓⇤ to denote the clean model which
is trained over B. The update rules for ✓ and ✓

⇤ are as follows.

✓
t+1 = ✓

t � ↵�t (14)

✓
t+1,⇤ = ✓
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. (15)

With Equation (14) and Equation (15), we have
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where the first inequality follows Lemma 4.
Now, we treat T1. As �t,⇤ = 1/|B|

P
i2B �t,⇤
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where the first inequality follows Lemma 4.
We now treat T2, T3, respectively. For T2, given that �t = F (�t

1,�
t
2, . . . ,�

t
n), we have
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where the first inequality follows Lemma 1 in the paper. Define �B := 1
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where the first inequality follows Lemma 4. For T4, we have
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where the both first and second inequality follow Lemma 5, the third inequality follows Assumption 2.
Similarly, we have
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For T6, we have
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where the first inequality follows Assumption 1.
Plugging Inequality (22), Inequality (21), and Inequality (20) back to Inequality (19), we have:
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Plugging Inequality (23), Inequality (18) back to Inequality (17), we have
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Therefore, we have
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where the second inequality follows ⌘  1/2⌧ , and the last inequality holds as ⌧�2  1.



We inductively prove the Lemma 2, assume for T � 1 the statement of Lemma holds. Let �(T ) =
PT

i=1(↵
i)2, by Inequality

(25), we have
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By Bernoulli’s inequality we have
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which concludes the proof.
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