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Supplementary Material

Overview
In the supplementary materials, we discuss the additional
results, experiment details, and the limitations of our work.
In Sec. A, we report the additional results of the perfor-
mance evaluation (Sec. 4.2 of the main paper). In Sec. B, we
provide more details about our experiment settings. Finally,
we discuss the limitations of our method in Sec. C.

A. Additional Results
We provide more visualization results including RGB im-
ages and depth maps from DropoutGS with 3 views as in-
put on the DTU in Fig. I. Compared with DNGaussian, our
DropoutGS can capture more accurate 3D characteristics
and render clean novel views. We also show the render-
ing results of DropoutGS in the more view setting in Fig. II.
Figure III illustrates the performance of other 3DGS-based
methods with and without our approach.

B. Experimental Details
B.1. Implementations

DropoutGS. We use the pre-trained DPT estimator [4]
to generate monocular depth maps for geometry regular-
ization, following the approach in [3]. For the LLFF
dataset, we adopt the dpt hybrid 384 model, while the
dpt large 384 model is used for DTU and Blender. Addi-
tionally, we employ a neural color renderer to predict col-
ors for each Gaussian, replacing spherical harmonics, as in
DNGaussian, to achieve high-quality rendering. We con-
duct the experiments with a single GeForce RTX 3090 and
the average training time is around 3 minutes per scene with
6k iterations.
Random Dropout Regularization. The dropout rate is set
to 0.4 on the LLFF dataset and 0.3 on the DTU dataset. For
the regularization coefficient λRDR, it is set to 0.2 for LLFF
and 0.5 for DTU.
Edge-Guided Splatting Strategy. We employ the Sobel
Edge Detector [1] to obtain the edge maps for edge score
calculation. The edge threshold is set to 1 × 10−3 and
5×10−2 for LLFF and DTU, respectively. The scale thresh-
old is set to 50 and 1 times of the size threshold used in the
original splitting on the LLFF and DTU datasets, respec-
tively.

B.2. Dataset

LLFF. The LLFF dataset contains 8 challenging forward-
facing scenes. Following [3, 5], we use every 8 images as

the test set while evenly sampling among the remaining im-
ages as the training set. In practice, we downsample the
original images 8 times to the resolution of 378× 504.
DTU. We evaluate our method on 15 out of the total 124
object-centered scenes included in the DTU dataset follow-
ing the previous works [3, 5]. The scan IDs of the test
scenes are 8, 21, 30, 31, 34, 38, 40, 41, 45, 55, 63, 82,
103, 110, and 114. In each scene, we use the images with
the IDs 25, 22, and 28 as the input views while the IDs 1,
2, 9, 10, 11, 12, 14, 15, 23, 24, 26, 27, 29, 30, 31, 32, 33,
34, 35, 41, 42, 43, 45, 46 and 47 as evaluation views. The
image size is downsampled 4× in the implementation.
Blender. Blender contains 8 synthetic scenes, each provid-
ing viewpoints covering 360 degrees. We follow the data
split used in previous works [2, 5] and take the selected 8
views as input with IDs 26, 86, 2, 55, 75, 93, 16, 73, and
8. The 25 test views are evenly sampled from the testing set
for evaluation. We downsample all images to the resolution
of 400× 400 during the experiments.

C. Limitation
DropoutGS introduces dropout into sparse 3DGS to alle-
viate overfitting degradation with limited inputs, achieving
significant improvement in the rendering quality. How-
ever, our approach still has the following limitations. 1)
Dropout rate and edge threshold are critical to the final per-
formance and require careful tuning per scene to obtain op-
timal results. 2) Our method introduces large improvements
to methods initialized with random point clouds while the
gains are weakened for well-initialized Gaussians.
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Figure I. Additional novel views and depth maps rendered from DropoutGS with 3 views on the DTU dataset.
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(a) 3 views
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(b) 6 views
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(c) 9 views

Figure II. Additional novel views synthesis results from DropoutGS using 3, 6, and 9 views as input on the LLFF dataset.
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Figure III. Additional rendered images and depth maps of the compatibility experiments on the LLFF dataset. * with MVS point
cloud as initialization. † with the same hyperparameters and the neural color renderer as DNGaussian.
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