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A. Structure of Supplementary Material
This supplementary material is divided into two parts to
provide a more comprehensive understanding of the details
of our proposed method and its experimental results. We
start by providing an overview of our GoodAC in Section B,
accompanied by pseudocode for clarity. In Section C, we
added some experimental details and results. We first ex-
plained the calculation details of the evaluation metrics,
then we further illustrate the effectiveness of our GoodAC
across various prompts, and finally evaluate the effective-
ness of our method across different noise budgets, model
version discrepancies, and different customization methods.

B. The Overview of GoodAC
The GoodAC method, as shown in Algorithm 1, aims to
generate a corresponding perturbation δ for each clean im-
age x in the dataset XB to be protected. A iterative strategy
is employed to perturb the images in XB. In each itera-
tion, we first fine-tune the model using the clean reference
dataset XA to enable the model to learn the correct concepts
of the images. Then, we compute three types of losses to
obtain the adversarial perturbation δ, as follows: ¶ Lcond:
Compute and maximize the conditional loss Lcond of the
current image under the original LDM so that the perturbed
image deviates from the correct concept. · LGoodAC : As
described in the main paper, block angle transformations are
first applied to disrupt the spatial correlations of perceptual
features, followed by edge detection to extract fine facial at-
tributes for targeted distortion. The loss function LGoodAC
is calculated based on these operations. ¸ Lfeat: Given
the feature-level attack advantage of SimAC, we compute
Lfeat and incorporate it into the total loss, with its weight
adjusted by the parameter γ to prevent perturbations from
affecting non-critical facial attributes.

Finally, we use these three loss functions to generate
the final adversarial perturbation δ, constrain its L∞ norm
within η, and add it to the image to produce the final per-
turbed image. After the iterative process is completed, all
images in XB are transformed into their perturbed versions,
resulting in the protected dataset XB(adv) and the corre-
sponding perturbations δ(adv).

C. Experiment
In this section, we added some experimental details and pro-
vide additional experiments to comprehensively evaluate
our GoodAC. We first add the calculation details of the eval-

Algorithm 1 GoodAC algorithm
Require:
XA: reference clean dataset
XB: clean dataset to be protected
θ: parameters of the customized LDM
β and γ: weight factors
κ and ν: number of blocks and maximum rotation angle
η: adversarial perturbation budget

Ensure:
XB(adv): protected image dataset
δ(adv): adversarial perturbation of each image in XB(adv)

Begin:
1: θ′ ← θ, XB(adv) ← XB, δ(adv) ← {0, ..., 0}
2: for each training step t in {1, . . . , 50} do
3: θ′ ← argmin

θ′

∑
x′∈XA

Ldb (θ′, x′)

4: for each image x in XB(adv) do
5: calculate Lcond (θ′, x)
6: calculate LGoodAC (θ′, x, β, κ, ν)
7: calculate Lfeat (θ′, x)
8: Lall ← Lcond + LGoodAC + γ · Lfeat
9: for each PGD step p in {1, . . . , 6} do

10: δ ← α · sign(∇xadv
Lall)

11: end for
12: clamp ‖δ‖∞ to η
13: x← x+ δ
14: δ(adv)[x.index]← δ
15: end for
16: θ′ ← argmin

θ′

∑
x′∈XB

Ldb (θ′, x′)

17: end for
18: return XB(adv), δ(adv)

End

uation metrics in subsection C.1. Then, in subsection C.2,
we employ a wider range of prompts to demonstrate the ef-
fectiveness of GoodAC in resisting concept transfer in sub-
section C.2. Subsequently, we analyze the impact of dif-
ferent noise budgets on the attack performance in subsec-
tion C.3. Finally, we evaluate the robustness of our GoodAC
against discrepancies between model versions in subsec-
tion C.4, and evaluate the ability of our GoodAC across var-
ious customization methods in subsection C.5.

C.1. Calculation Details of Evaluation Metrics
The Face Detection Failure Rate (FDFR) measures the pro-
portion of generated images from successfully disrupted
DreamBooth models that contain no detectable face. We
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Figure 6. Visualization results across various prompts on CelebA-
HQ dataset. Our GoodAC maintains excellent resistance to con-
cept transfer in most scenarios.

use the RetinaFace detector [5] for face detection. For im-
ages where a face is detected, we calculate the Identity
Score Matching (ISM) by extracting face recognition em-
beddings using the ArcFace recognizer [6], and computing
the cosine distance between the embedding of the generated
image and the average embedding of the user’s clean image
set. This metric reflects the identity similarity. Addition-
ally, we use SER-FQA [21, 31], a recently proposed im-
age quality assessment metric specifically tailored for facial
images, and BRISQUE, a classical and widely adopted no-
reference image quality metric. Since ArcFace embeddings
may not fully capture differences in visual content or facial
attributes, we further extract general visual features using a
ResNet50 encoder [11] to enhance similarity measurement.

C.2. More Results on Different Prompts
To further evaluate the effectiveness of our proposed
GoodAC method in resisting concept transfer across var-
ious prompts, we conduct additional experiments using a
more diverse set of prompts with finer-grained scenarios.
These prompts are as follows:
• Prompt A: “a photo of sks person reading a book”
• Prompt B: “a photo of sks person in a kitchen cooking”
• Prompt C: “a photo of sks person at a business meeting”
• Prompt D: “a photo of sks at a train station”
• Prompt E: “a photo of sks person in a forest hiking”
• Prompt F: “a photo of sks person wearing a Nike shirt”
• Prompt G: “a photo of sks person hiking in mountains”
• Prompt H: “a photo of sks person at a yoga class”

The results are shown in Figure 6. It can be seen that in
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Figure 7. Results of different noise budgets under original four
prompts on CelebA-HQ dataset.

different scenarios, the new images generated by the model
based on the protected images are covered with heavy tex-
tures and fail to capture precise facial attributes. This effec-
tively demonstrates the efficacy of our proposed perceptual
feature correlation disruption strategy and precise facial at-
tribute distortion strategy. These techniques ensure that the
protected images generated by GoodAC maintain excellent
resistance to concept transfer in most scenarios.

C.3. Extra Analysis on Different Noise Budgets

It is crucial to understand the impact of different noise bud-
gets on the performance of our method. In the main paper,
we set a standard noise budget of 16/255 for GoodAC and
other comparison methods, as excessive perturbation on the
original image can severely degrade its quality. Here, we
conduct further analytical experiments using different noise
constraints, including 4/255, 8/255 and 32/255. We follow
the settings in the main paper and conduct experiments us-
ing the following four prompts:



• Prompt 1: “a photo of sks person”
• Prompt 2: “a dslr portrait of sks person”
• Prompt 3: “a photo of sks person looking at the mirror”
• Prompt 4: “a photo of sks person in front of eiffel tower”

The results are shown in Figure 7. With an increas-
ing perturbation budget, the textures overlaying the gener-
ated images become more chaotic, and facial attributes be-
come less distinct. Thus, it can be concluded that the anti-
customization effect improves as the noise budget increases.
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Figure 8. Different noise budgets attention maps before and after
anti-customization of our GoodAC.

Additionally, we visualized the attention maps of anti-
customized examples under different noise budgets to ob-
serve the impact of noise budgets on global feature correla-
tion disruption. As shown in Figure 8, we can see that at a
low budget, the model’s attention, similar to the clean im-
age, focuses on facial features such as the mouth and eyes.
However, when the budget increases to 16/255, the attention
shifts to the image background and other irrelevant areas,
thereby increasing the disruption of perceptual feature cor-
relations. From this, we can conclude that as the budget in-
creases, the degree of disruption to perceptual feature corre-
lations rises, leading to a more effective anti-customization.

Furthermore, we provide quantitative data to demon-
strate the impact of noise budgets on anti-customization
effectiveness. In our experiments, we used varying noise
budgets based on the GoodAC method on the CelebA-
HQ dataset to assess anti-customization effectiveness. The
evaluation is based on four key metrics: ISM (Identity
Similarity Metric), FDFR (Face Detection Failure Rate),
BRISQUE, and SER-FQA (Semantic and Entity-based Re-
alism Fidelity Quality Assessment). We observe that as
the noise budget increases, ISM and SER-FQA decrease,
indicating higher dissimilarity between the generated im-
age and the original, as well as reduced perceived realism.
These trends align with the goals of anti-customization,
where lower ISM values are preferable, as they signify
less similarity between the generated image and the origi-
nal face, and lower SER-FQA values are desirable, as they
suggest lower likelihood of appearing realistic or recog-
nizable by facial recognition systems. In contrast, FDFR
and BRISQUE exhibit the opposite trend. Specifically,

higher FDFR values indicate that generated images are
more likely to evade face detection models, beneficial for
anti-customization. Overall, the results are shown in Ta-
ble 1, it can be seen that increasing the noise budget leads
to greater degradation of the generated image quality.

Table 5. Different noise budgets based on GoodAC on CelebA-
HQ dataset, where lower ISM and SER-FQA are better and higher
FDFR and BRISQUE are better.

budget “a photo of sks person”

ISM↓ FDFR↑ BRISQUE↑ SER-FQA↓

4/255 0.11 56.67 38.66 0.31
8/255 0.06 83.33 38.70 0.12
16/255 0.03 96.67 39.75 0.02
32/255 0.01 99.99 40.33 0.01

budget “a dslr portrait of sks person”

ISM↓ FDFR↑ BRISQUE↑ SER-FQA↓

4/255 0.05 66.67 25.94 0.23
8/255 0.03 93.33 39.88 0.04
16/255 0.01 99.99 43.21 0.01
32/255 0.01 99.99 45.55 0.01

budget “a photo of sks person looking at the mirror”

ISM↓ FDFR↑ BRISQUE↑ SER-FQA↓

4/255 0.07 46.67 37.48 0.35
8/255 0.06 73.33 42.47 0.17
16/255 0.02 96.67 44.11 0.01
32/255 0.01 99.99 44.90 0.01

budget “a photo of sks person in front of eiffel tower”

ISM↓ FDFR↑ BRISQUE↑ SER-FQA↓

4/255 0.11 30.01 38.11 0.43
8/255 0.11 65.75 40.23 0.38
16/255 0.02 96.67 44.99 0.02
32/255 0.01 99.99 45.81 0.01

C.4. Extra Analysis on Model Mismatch
To evaluate the sensitivity of our GoodAC to discrepancies
between model versions, which we refer to as model mis-
match, we tested its anti-customization performance across
different iterations of the Stable Diffusion model. We fol-
low the settings in the main paper and conduct experiments
using the original four prompts as above.

Specifically, we trained our method using Stable Diffu-
sion v2.1 and evaluated it on both Stable Diffusion v1.4 and
Stable Diffusion v2.1. As shown in Figure 9, when tested
on SDv1.4, the facial features in the generated images un-
der prompts 2, 3, and 4 are largely lost, indicating that our
method effectively resists concept migration across differ-
ent model versions. When using prompt 1, we observe that
the faces still exhibit distortion, and the protected facial fea-
tures are not fully replicated. Therefore, we can conclude
that our method maintains strong anti-customization perfor-
mance even under model mismatch conditions.
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Figure 9. Results of models mismatch under original four prompts
on CelebA-HQ dataset.
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Figure 10. Results of customization mismatch under four prompts
on CelebA-HQ dataset with SimAC and GoodAC. The training
is based on Dreambooth and the customization test is based on
Lora. The experiment simulates an attacker using an unknown
customization method.

C.5. Extra Analysis on Customization Method Mis-
match

To simulate scenarios where attackers employ unknown or
different customization techniques, we trained our GoodAC

method based on Dreambooth and tested it against mod-
els customized using LoRA. The results, as shown in Fig-
ure 10, indicate that when attackers use LoRA, SimAC
performs poorly across all prompts, largely losing its anti-
customization capability and allowing facial features to be
almost fully restored. The reason for this is that SimAC
overly relies on the model’s gradient information and fails
to account for the limitations of image features, leading
to a strong coupling between the adversarial perturbation
and the model. In contrast, GoodAC maintains efficient
anti-customization performance, effectively distorting fa-
cial features across all prompts. Thus, even when there is a
mismatch between the customization methods used during
training and testing, GoodAC effectively resists customiza-
tion. Therefore, we conclude that our method provides ro-
bust anti-customization performance against different cus-
tomization strategies employed by attackers.


