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Supplementary Material

We will release the complete dataset including the consoli-
dated MoCap data and our synthetic data, as well as models
for benchmarking tasks. In this supplementary material,
we introduce: (1) an overview of the structure of our In-
terAct dataset in Sec. A, along with a website featuring
demo videos of benchmark tasks, demonstrating how in-
teraction correction and augmentation improve data quality
and scale; (2) additional illustrations and details of our data
curation, correction, and augmentation processes in Sec. B;
(3) further implementation details and experimental results
in Sec. C, which were omitted from the main paper due to
space limitations; (4) licensing information in Sec. D; and
(5) a discussion of limitations and potential negative societal
impacts of our work in Sec. E.

A. Dataset
A.1. Structure
Each sequence folder contains the following files:
Motion Data. The human motion data (human.npz)
contains SMPL parameters [62, 73]. We have standard-
ized all data to a common global coordinate system and
aligned ground heights for consistency. The object data
(object.npz) includes the object names (indicating the
corresponding point cloud file), as well as information on
object angles and translations.
Interaction Representation. We convert the motion
data into interaction representations, resulting in two files:
markers.npy, containing the human representation, and
motion.npy, which includes both human motion (rep-
resented by markers) and object motion (represented by
BPS [68]).
Annotations. The annotations include multiple text descrip-
tions (text.txt) and action labels (action.txt).
Visualizations. We also provide corresponding videos for
the interaction data within each sequence folder for visual
reference.

A.2. Webpage
Our website is at https://sirui-xu.github.io/
InterAct. It includes demo videos comparing the raw
data with our corrected and augmented versions, as well as
showcasing generated results across six interaction genera-
tion tasks. These demos complement the quantitative results
in the main paper, demonstrating that our unified multi-task
model, trained on our extensive dataset, achieves state-of-
the-art performance. We also compare our marker-based

representation to joint position and rotation-based represen-
tations, demonstrating that markers as representative surface
vertices are better suited for interaction modeling, since con-
tact occurs on surfaces rather than joints.

B. Data Collection, Annotation, and Unification
B.1. Text and Action Annotation
In Sec. 3.1 of the main paper, we describe our process for
manually annotating interaction sequences with detailed text
instructions. Here, we elaborate on how we leverage large
language models for automatic annotation augmentation,
and generate additional action labels that facilitate further
tasks.

We use GPT-4 [60] to rephrase, simplify, and generate
action labels for the annotations we collected. Specifically,
for rephrasing and simplification, we send two messages to
the API: a system message containing the requirements and
the annotation that needs to be processed. For example, the
system message we use for the simplification task is:

“I will provide a few sentences describing a
human interacting with an object. Your task is to

shorten the description while retaining its
meaning, ensuring the object’s name remains

unchanged.

To generate action labels, we prompt GPT-4 to identify
from 15 predefined action labels and categorize the annota-
tions accordingly. Specifically, the prompt we use is:

”I will provide a few sentences describing a
human interacting with an object, and you need to

select the single most fitting word to describe
interactions from the following set: [Carry, Sit,

Swing, Exercise, Rotate, Move, Hold, Drink, Eat,
Play, Adjust, Lift, Kick, Pass, Manipulate]. Your

response should be one word only.”

We include some of our manually annotated action labels
in the prompt to enhance in-context learning and response
accuracy of the language model.

B.2. Processing of Each Sub-dataset
GRAB [77] provides full 3D body shape, pose, and 3D ob-
ject pose data captured using MoCap markers. We utilize
their SMPL-X [62] human annotation, downsample interac-
tion sequences from 120 to 30 fps, and align the data to our
unified global coordinate system and ground heights.
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BEHAVE [4] contains HOI video frames captured from
multi-view RGBD sequences. We use their SMPL-H [73]
human annotation. We align their data into our unified global
coordinate system and ground heights.
InterCap [28] contains HOI video frames captured from
multi-view RGBD sequences. We use their SMPL-X [62]
human annotation. We align their data into our unified global
coordinate system and ground heights.
Chairs [29] contains HOI video frames captured from multi-
view RGBD sequences. We only select sequences that con-
tain rigid objects. We only select sequences that contain
rigid objects. To correct the tilted human and object, we
calculate the ground normal vector using the lowest point
set of the human and object in each frame. We use their
SMPL-X [62] human annotation, interpolating interaction
sequences from 10 to 30 fps. We align their data into our
unified global coordinate system and ground heights.
HODome [115] contains a total of HOI video frames cap-
tured from 76 viewpoints. The human body data are captured
from these multi-view images using EasyMocap [2]. We fur-
ther process these representations to standard SMPL-H [73]
annotation, downsample interaction sequences from 60 to 30
fps, and align them into the same global coordinate system
and ground heights.
OMOMO [38] contains object and human motion captured
using a Vicon system comprised of 12 cameras controlled by
Vicon Shogun. We use their SMPL-X [62] human annotation.
We align their data into our unified global coordinate system
and ground heights.
IMHD [123] contains video frames captured from both RGB
cameras and the object-mounted Inertial Measurement Unit
(IMU). We process their human representations to standard
SMPL-H [73] annotation, downsample interaction sequences
from 60 to 30 fps, and align them into the same global
coordinate system and ground heights.

B.3. Interaction Correction

In this section, we provide the formulation or explanation of
learning objectives for interaction correction and augmenta-
tion, which are omitted from Sec. 3.2 of the main paper due
to space constraints.
Hand Correction. We define the hand poses as {handi}Li=1

of arbitrary length L. The learning objectives are,
(1) Penetration Loss. Given the signed distance field of the
human sdfi, we employ a penetration loss to penalize the
body-object interpenetration,

Epene = →
L∑

i=1

∑

do

min(sdfi(voi [k]), 0), (1)

where voi [k] refers to the object vertex of index k at frame i.
(2) Smooth Loss. We employ a smoothing loss to avoid

excessive speed and acceleration changes.

Esmooth =
L→1∑

i=1

↑handi+1 → handi↑22

+
L→2∑

i=1

↑(handi+2 → handi+1)→ (handi+1 → handi)↑22

(2)

where handi represents the hand pose at time step i

(3) Prior Loss. We apply a prior loss to maintain natural hand
poses and prevent the hand joints from exceeding their range
of motion (RoM) due to excessive guidance from the Contact
Loss. We set the RoM constraints as (handmax,handmin)
for all joint, derived from the statistical analysis of the
GRAB [77] dataset. The loss is defined as,

Eprior =
L∑

i=1

↑min(handi → handmin, 0)↑22

+ ↑max(handi → handmax, 0)↑22 (3)

Hyperparameters of Contact Promotion. We include the
formulation of the contact indicator ci for contact promotion
loss defined in Sec. 3.2 of the main paper.

ci =






1 minj dj [i] ↓ ω

0 minj dj [i] > ω2

→12.5minj dj [i] + 1.25 otherwise,
(4)

where minj dj [i] refers to hand-object chamfer distance, ω =
0.02 indicates the contact threshold following [4], and ω2 =
0.10 indicates the non-contact threshold. The expression
→12.5minj dj [i] + 1.25 provides the linear interpolation
between these two phases.
Full-Body Correction. In full-body correction, we jointly
optimize the full-body human pose {hi}Li=1 and the object
pose {oi}Li=1, given the ground truth counterparts {h↑

i }Li=1

and {o↑
i }Li=1. The overall objective is defined as,

E = εpeneEpene + εsmoothEsmooth + εrecErec, (5)

where each component of the loss is defined as follows:
(1) Penetration Loss. Same as defined for hand correction.
(2) Smooth Loss. The smooth loss incorporates additional
terms for object motion.

Es =
L→1∑

i=1

↑hi+1 → hi↑22 ++
L→1∑

i=1

↑oi+1 → oi↑22

+
L→2∑

i=1

↑(hi+2 → hi+1)→ (hi+1 → hi)↑22

+
L→2∑

i=1

↑(oi+2 → oi+1)→ (oi+1 → oi)↑22 (6)



(3) Reconstruction Loss. The reconstruction loss promote the
optimized human and object pose to be close to the ground
truth h↑

i and o↑
i ,

Erec =
L∑

i=1

↑hi → h↑
i ↑+ ↑oi → o↑

i ↑ (7)

B.4. Interaction Augmentation
We align the human body to maintain interaction with the ob-
ject to achieve contact invariance as we highlight in Sec. 3.2
of the main paper. In addition to the learning objective (1)
Ealign, introduced in the main paper to ensure contact consis-
tency, we incorporate two additional objectives: (2) Ereg, a
regularization term that penalizes excessive deviations from
the original human body pose, with a particular focus on key
body parts not in contact with the object; and (3) Esmooth,
as defined in Sec. B.3, which promotes temporal smoothness
between frames by restricting velocity and acceleration. The
regularization term is derived from the reconstruction loss
described in Sec. B.3, and is reformulated as follows:

Ereg = ϑ

L∑

i=1

mm↑hi → h↑
i ↑+

1

ϑ

L∑

i=1

↑hi → h↑
i ↑,

where mm is a mask applied to joints that are not involved
in the interaction, and ϑ = 5 is selected to emphasize these
vertices. The overall objective for augmentation is then
defined as:

Eaug = Ealign + Ereg + Es, (8)

where the optimization runs for 300 iterations to update the
human body pose h.

C. Additional Implementation Details and Ex-
perimental Analysis

C.1. Marker-Based Representation with Shape
Variance

Our method uses the marker-based representation that cou-
ples pose and shape. Despite the coupled representation, our
model can generate diverse human shapes during interaction
generation. Although our task does not focus on specific
human shape control and our text descriptions do not specify
detailed characteristics like height or body type, the model
inherently captures variability from the training data. This
results in diverse human shapes, with heights varying from
1.71m to 1.81m across 50 batches of generation.

C.2. Text-Conditioned Interaction Generation
Additional Implementation Details. We split each sub-
dataset into training and testing sets using a 9:1 ratio. Unlike

HOI-Diff [63], which computes the Mean Squared Error
(MSE) for all motion representations simultaneously, we
calculate the loss for the human marker representation and
the object motion representation separately. To balance these
components, we assign the object motion loss and the con-
tact label loss weights of 0.9 relative to the human motion
loss. During training, the model generates 300 frames per
sequence—longer sequences are cropped, shorter ones are
zero-padded, and padded regions are masked during loss
calculation. All experiments were conducted on a single
NVIDIA A40 GPU over eight days.

Below, we describe how we apply guidance during the
diffusion process, corresponding to the fourth model variant
introduced in Sec. 5.2. Our key insight is to perform an addi-
tional calculation of object motion in a relative coordinates
with respect to markers. By comparing the discrepancy L

between the directly regressed object coordinates and those
motion derived from human motion markers, we compute
gradients to guide the object trajectories. The loss function
L is weighted inversely by the distance between each marker
and the object to emphasize the influence of closer body
parts. We then compute the gradients of this loss with re-
spect to the object’s translation o and rotation r, and the
predicted means are updated during the final 30 iterations of
diffusion denoising given 1000 iterations in total:

ô = ô→ ϖ1
ϱL

ϱo
, r̂ = r̂ → ϖ2

ϱL

ϱr
,

where ϖ1 = 0.1, ϖ2 = 0.2 is selected. This guidance directs
the diffusion model to generate object motions that consider
the relationship with the human. Similar design choices can
be found in [18, 63, 93, 102].

C.3. Action-Conditioned Interaction Generation
Additional Implementation Details. We rephrase the ac-
tion label as “A person [action] the [object name]” and
treat it similarly to text-conditioned generation, utilizing
our interaction-aware text encoder to encode the text as in-
troduced in Sec. 5.2 of the main paper. We uses the same
data split, motion representation, and loss functions as the
text-to-interaction task. Each experiment is conducted on a
single NVIDIA A40 GPU over a duration of eight days.

C.4. Object-Conditioned Human Generation
Additional Implementation Details. We follow the dataset
splitting strategy proposed in OMOMO [38]. Specifically,
we divide HOI interactions into disjoint training and testing
set based on object categories. As detailed in Table. A,
the training set includes 168 objects, while the testing set
consists of 29 unseen objects. Compared to baseline models,
our multi-task model separately computes the human marker
reconstruction loss and an additional feature reconstruction
loss. The weight for the additional feature reconstruction



Dataset Training Objects Test Objects
behave chairwood, keyboard, tablesquare, yogamat, boxmedium, suitcase,

basketball, boxsmall, backpack, boxtiny, plasticcontainer, monitor,
boxlong, stool, toolbox, chairblack

trashbin, boxlarge,
tablesmall, yogaball

chairs 110, 162, 75, 64, 181, 156, 123, 111, 81, 45, 116, 33, 68, 60, 43, 130,
176, 158, 48, 59, 166, 96, 30, 87, 141, 44, 36, 103, 147, 149, 83, 154, 99,
104, 98, 85, 152, 180, 172, 109, 131, 157, 117, 92, 46, 151, 142, 49, 26,

29, 118, 171, 173, 168, 143, 121

15, 17, 24, 25

grab toothpaste, spheremedium, cubesmall, table, cylindermedium,
cubemedium, cubelarge, apple, duck, cubemiddle, wristwatch,

waterbottle, flute, pyramidmedium, piggybank, banana, spheresmall,
pyramidsmall, eyeglasses, coffeemug, cylindersmall, torussmall,

flashlight, knife, stanfordbunny, pyramidlarge, rubberduck, camera,
alarmclock, bowl, wineglass, headphones, cylinderlarge, hammer,

stamp, torusmedium, toruslarge, hand, toothbrush, watch, doorknob,
body, stapler, train, scissors, mug, elephant, lightbulb, fryingpan,

gamecontroller, binoculars, airplane, mouse

phone, cup, teapot,
spherelarge

imhd broom, pan, baseball, dumbbell, kettlebell, suitcase chair, skateboard, golf,
tennis

intercap skateboard, stool, racket, soccerball, fantabottle, suitcase chair, toolbox, umbrella, cup
neuraldome pillow, smallsofa, trolleycase, monitor, tennis, baseball, flower, chair,

pan, case, table, badminton, pingpong, book, keyboard, trashcan, pink
bigsofa, box, talltable, desk

omomo floorlamp, vacuum bottom, mop top, largetable, largebox, smallbox,
vacuum, monitor, mop bottom, plasticbox, vacuum top, clothesstand,

trashcan, woodchair

smalltable, whitechair,
suitcase, tripod, mop

Table A. Data split for the task of object-conditioned human generation.

loss is set to half that of the human marker reconstruction
loss. We adopt the same architectural design as the 1-stage
and 2-stage baselines in [38]. Our multi-task model consists
of four self-attention blocks, each with four attention heads.
The dimensions for keys, queries, and values are all set
to 256, and each layer produces a 512-dimensional output.
The bps feature is configured with a dimension of 256. For
training, we use a batch size of 64 over 300k iterations. All
experiments are performed on a single NVIDIA A40 GPU,
and training the multi-task model, the 1-stage baseline, and
both components of the 2-stage baseline takes roughly 23
hours.

C.5. Human-Conditioned Object Generation

Additional Implementation Details. We split the dataset
into training and testing sets using a 10:1 ratio. In our multi-
task model, we define ω as the distance between human
markers and the object. Following the object-conditioned hu-
man generation setup, the additional feature reconstruction
loss is weighted at 0.5 times that of the human marker recon-
struction loss. Our model leverages the same transformer ar-
chitecture and diffusion framework as the object-conditioned
human generation model. For training, we use a batch size
of 64 for 260k iterations, with each experiment running on

a single NVIDIA A40 GPU and taking approximately 19
hours.

C.6. Interaction Prediction
Addtional Implementation Details. We use the same
transformer architecture and diffusion framework as Inter-
Diff [102]. We substitute the original SMPL representation
in InterDiff with marker positions and adjust the correspond-
ing loss function accordingly. As a result, the input and
output representations now include marker positions, object
angles, object translations, with object geometry as condi-
tions for the diffusion process. Compared to InterDiff, We
increase the loss weight for marker MSE by a factor of ten
compared to the SMPL MSE loss. For both the InterAct and
BEHAVE datasets, we split the data, using 90% for training
and the remaining 10% of the BEHAVE dataset for testing.
For each experiment, the training process is conducted on a
single NVIDIA A40 GPU over a span of two days.

D. License
All data are shared under the CC BY-NC-SA (Attribution-
NonCommercial-ShareAlike) license. We will also es-
tablish a GitHub repository https://github.com/
wzyabcas/InterAct to receive user feedback on any
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annotation errors. Users must review and follow the original
licenses for each sub-dataset. Please find the licenses of
corresponding assets in the code directories, and below is a
summary of the licenses for the assets we have used:
1. GRAB [77] uses Software Copyright License for non-

commercial scientific research purposes
2. BEHAVE [4] uses Software Copyright License for non-

commercial scientific research purposes
3. InterCap [28] uses Software Copyright License for non-

commercial scientific research purposes
4. Chairs [29] does not indicate their license but requires to

follow the license of each sub-modules they used
5. HODome [115] uses Apache License
6. OMOMO [38] does not indicate their license
7. IMHD [123] uses Dataset Copyright License for Non-

commercial Scientific Research Purposes

E. Discussion
Limitations. Despite that our dataset significantly expands
the number of objects to 217 – nearly ten times more than
existing HOI datasets – we acknowledge that it still possesses
scale limitations. While our dataset advances the field by
providing enriched annotations and supporting new tasks
like text-to-HOI and action-to-HOI, it does not cover the full
diversity of in-the-wild object categories encountered in real-
world interactions. Although our experiments demonstrate
that models trained on our dataset exhibit generalization
to out-of-distribution objects within the dataset’s scope, as
presented in Table 6 and our webpage, achieving robust
generalization to a broader range of unseen objects will
require further expansion. Therefore, while our work makes
a significant step toward larger-scale datasets, future efforts
are needed to overcome these scale limitations and enhance
model performance.

Another limitation of our method lies in the inherent
challenges of denoising and correcting full-body HOI data,
especially when dealing with significant noise in the orig-
inal datasets. Issues like floating objects often stem from
errors in the initial data rather than shortcomings of our ap-
proach. The severity of these errors can be too great for
our correction process to handle effectively with the current
hyper-parameter configuration, as large distances between
the human and object may be identified as no contact and
thus remain uncorrected. While adjusting hyper-parameters,
such as employing a more aggressive contact threshold, can
resolve specific issues like floating objects, we choose to
apply unified hyper-parameters across all data for simplicity.
Consequently, our method may not correct all artifacts in
every scenario. Despite this, it effectively reduces notice-
able noise and penetration issues, significantly improving the
overall quality and plausibility of the motion data compared
to the original.
Ethics Discussion and Potential Negative Societal Impact.

We collect data on real behavioral information, which could
potentially raise privacy concerns. And our correction and
augmentation could be used to generate fake data and mis-
leading information. However, we ensure that all collected
and generated human data are processed into a format using
SMPL [45] or markers, which significantly reduces identi-
fying details compared to the raw data or images from their
original own data. This processed representation effectively
enhances privacy. Additionally, all annotations are gathered
by the authors with participant consent. We meticulously
review all augmented annotations generated by the language
model to ensure they do not contain any harmful information
or breach privacy.
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