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Supplementary Material

Figure A. InterMimic enables simulated humans to perform physical interactions, featuring scalable skill learning covering diverse objects.

In this supplementary, we provide additional method details
and experimental setups:

(i) Demo Video. A demonstration video (with a screen-
shot in Figure A) is provided at demo.mp4, as de-
scribed in Sec. A.

(ii) Simulation Setup. The environment configuration
for physical HOI simulations is introduced in Sec. B.

(iii) Reference Contact Labels. Additional information
on obtaining the reference contact label ĉt is detailed
in Sec. C.

(iv) Reward Formulation. A comprehensive explana-
tion of the reward design is provided in Sec. D.

(v) Physical State Initialization & Interaction Early
Termination. Further insights into these mechanisms
are discussed in Sec. E.

(vi) Implementation Details. This section (Sec. F) cov-
ers reframing our method for interaction prediction
and text-guided interaction generation, as well as
translating MoCap interactions into humanoid robot

skills.
(vii) Additional Experiments. Sec. G presents further

qualitative results and analyzes failure cases.
(viii) Limitations and Societal Impact. Finally, we ex-

amine the limitations of InterMimic and its potential
societal implications in Sec. H.

We will release the code for this project at our webpage.
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A. Demo Video
In addition to the qualitative results presented in the main
paper, we provide a demo video (demo.mp4) for more de-
tailed visualizations of the tasks, further illustrating the effi-
cacy of our approach. The demo video conveys the follow-
ing key points:

(i) Our teacher policy can imitate highly dynamic and
long-term interactions, both of which are inherently
challenging.

(ii) We visualize the effectiveness of our teacher policy
in HOI retargeting. Given MoCap references for hu-
mans, we successfully transfer these tasks to a hu-
manoid robot, tolerating embodiment differences.

(iii) Our method corrects errors in reference interactions,
addressing contact penetration, floating, and jittering
issues. This demonstrates how teacher-based refer-
ence distillation can provide cleaner data for student
policy training.

(iv) The baseline method PhysHOI [88] fails on se-
quences our approach successfully imitates, comple-
menting Figure 4 in the main paper.

(v) Our student policy exhibits strong scalability, effec-
tively learning from hours of data across diverse ob-
jects and interaction skills.

(vi) The framework grants the student policy zero-shot
generalizability, enabling direct application to text-
to-HOI, interaction prediction, and interactions with
new skills or objects – even multiple objects not
present in the training set.

B. Setup of Physical Interaction Simulation
The reference data represent humans using the SMPL mod-
els [61, 68]. For simulation, we convert these models into
box and cylindrical rigid bodies following [50]. Objects are
also converted into simulation models through convex de-
composition, as illustrated in Figure B. We summarize the
physics parameters for our task in Table A. We follow the
physics parameters for the human as specified in [88, 89],

Figure B. Visualization of the objects from OMOMO [39], each
decomposed into 64 convex hulls for simulation.

Hyperparameter Value

Sim dt 1/60s
Control dt 1/30s
Number of envs 8192

Number of substeps 2
Number of pos iterations 4
Number of vel iterations 0
Contact offset 0.02
Rest offset 0.0
Max depenetration velocity 100

Object & ground restitution 0.7
Object & ground friction 0.9
Object density 200
Object max convex hulls 64

Table A. Simulation hyperparameters used in Isaac Gym [54].

with the exception of the specialized range of motion (RoM)
for hands, detailed in Table B. Our range of motion (RoM)
setting is biologically inspired: finger flexion and extension
(bending and straightening) are fully activated. However,
unlike the real human, the abduction and adduction of the
Metacarpophalangeal (MCP) joint are constrained to min-
imize the risk of finger interpenetration, in the absence of
the correct reference hand pose for guidance. The rationale
for these RoM settings is discussed in Sec.3.2 of the main
paper and Sec.D.3 of the supplementary.

C. Reference Contact
In this section, we detail how we extract the reference con-
tact that formulates the state and the reward as discussed in
Sec. 3.1 of the main paper. One solution involves loading
the HOI data into the simulation, replaying the data, and us-
ing the force detector in Isaac Gym [54] to identify contact,

https://sirui-xu.github.io/InterMimic/assets/demo.mp4


Joint x-dim y & z-dim

MCP [→55.625→, 55.625→]
[→5.625→, 5.625→]PIP [→55.625→, 55.625→]

DIP [→5.625→, 90.000→]

CMC [→55.625→, 55.625→] [→55.625→, 55.625→]
MCP [→5.625→, 5.625→] [→5.625→, 5.625→]
IP [→5.625→, 90.000→] [→5.625→, 5.625→]

Table B. We constrain the Range of Motion (RoM) for the joints
in the index, middle, ring, and pinky fingers including: the MCP
(Metacarpophalangeal) joint where the finger meets the hand, the
PIP (Proximal Interphalangeal) joint as the middle joint, and the
DIP (Distal Interphalangeal) joint closest to the fingertip. For the
thumb, we consider the CMC (Carpometacarpal) joint at the base
in the palm, the MCP connecting the thumb to the hand, and the
IP (Interphalangeal) joint within the thumb. The coordinates for
describing these RoMs are based on the human model from [50].

as suggested by [88]. However, this approach is ineffective
for imperfect MoCap data; for instance, the force detector
fails to capture contact when floating artifacts occur. To
address this limitation, we propose solutions tailored differ-
ently for teacher and student training:
Reference contact for the student. We query the force de-
tector from distilled reference in the simulation rather than
from MoCap data replay, as the teacher policy is capable of
correcting artifacts.
Reference contact for teachers. To account for contact
distance variances, we determine reference contact based
on inferred dynamics from kinematics, as outlined below.

C.1. Inferring Reference Dynamics
By analyzing the object’s acceleration over time, we can ap-
proximate external forces without depending on simulated
dynamics. We assume human-object interaction occurs if
any of these conditions hold: (i) The object is airborne, but
its acceleration deviates significantly from gravitational ac-
celeration, indicating that an external force, e.g., human in-
teraction is acting upon it. (ii) The object is on the ground
but not static, and its acceleration significantly differs from
what is expected due to friction alone, suggesting additional
force input. (iii) The minimum distance between the human
and object vertices is below 0.01 meters.

When any condition is met, we define the contact thresh-
old ω as the minimum distance between the human and ob-
ject vertices, plus 0.005 meters. This adaptive threshold is
essential for accommodating contact distance variations in
the ground truth MoCap data. For example, the contact pro-
motion marker is defined as ĉb[i] = ↑d̂[i]↑ < ω, where i is
the index of human rigid bodies. We integrate ĉb into the
contact promotion reward R

c
b, as introduced in Sec. 3.2 of

the main paper and detailed in Sec. D.2 of supplementary.

d̂ is the joint-to-object vectors as defined in Sec. 3.1.

D. Additional Details on Reward

In this section, we provide further details about the reward
function used for policy training. Specifically, we describe
how we balance the components of the embodiment-aware
reward, formulate the contact and energy rewards, address
hand interaction recovery, and explain the process of inte-
grating all rewards into a unified scalar.

D.1. Embodiment-Aware Reward

We formulate the weight wd, introduced in Sec. 3.2 of the
main paper, for balancing the embodiment-aware reward:

wd[i] = 0.5↓ 1/↑d[i]↑2∑
i 1/↑d[i]↑2

+ 0.5↓ 1/↑d̂[i]↑2
∑

i 1/↑d̂[i]↑2
, (2)

where i is the joint index, and d and d̂ are vectors from the
human joint to the object surface for simulation and refer-
ence, respectively, as defined in Sec. 3.1 of the main paper.
The value ↑d[i]↑2 and ↑d̂[i]↑2 are clipped by a small posi-
tive value to prevent division by zero.

Our joint position and rotation tracking rewards, Rh
p and

R
h
ω , include both body and hand joints, even for imitating

datasets such as [3, 39] which present hands always in flat
or mean poses. This encourages hands to maintain a reason-
able default pose when the contact reward is not activated.

D.2. Contact Reward

The contact promotion cost function E
c
b is designed to en-

courage highly probable contact, as highlighted by the red
regions in Figure 3(i) of the main paper. This reward uti-
lizes the adaptive contact marker ĉb, described in Sec. C.1,

E
c
b =

∑
↑ĉb → c↑ ↔ ĉb, (3)

where c is the simulated contact extracted from the force
detected, as introduced in Sec. 3.1 of the main paper.

Contact penalties, applied to the blue regions in Fig-
ure 3(i) of the main paper, are defined using a larger and
fixed threshold of ωp = 0.1. Specifically, ĉp[i] = (↑d̂[i]↑ >

ωp)↗¬ĉg[i], where ↑d̂[i]↑ is the distance between joint i and
the object surface in the reference interaction as defined in
Sec. 3.1 of the main paper, and the negation ¬ of ĉg[i] in-
dicates the rigid body part i that is not in contact with the
ground. The cost of penalty is then calculated as:

E
c
p =

∑
↑c↑ ↔ ĉp. (4)



D.3. Hand Interaction Recovery
Our hand contact guidance is defined as:

E
c
h =

∑
↑clhand → ĉlhand↑ ↔ ĉlhand (5)

+ ↑crhand → ĉrhand↑ ↔ ĉrhand, (6)

where clhand and crhand represent contact labels for rigid
body components of the hands. The reference contact mark-
ers, ĉlhand and ĉrhand, are defined when any hand vertices
are within an adaptive threshold distance ω to the objects, as
described in Sec. C.1 of supplementary. To avoid overly ag-
gressive hand contact that could lead to unrealistic poses,
we impose range of motion constraints for the hand, as
shown in Table B, ensuring that RL-explored grasping re-
mains biologically realistic.

D.4. Energy Reward
We define the energy cost as E

e
h =

∑
↑ah↑, E

e
o =∑

↑ao↑, and E
e
c = max ↑f↑, where ah represents the ac-

celeration of human joints, ao the object’s acceleration, and
f the force detected on human rigid bodies. Applying them
penalizes abrupt contact and promotes smooth interactions.

D.5. Reward Aggregation
We define the weights for each cost function, in-
cluding E

h
p , E

h
ω , Ed, E

o
p , and E

o
ω , as described in

Sec. 3.2 of the main paper, along with E
c
b , E

c
p,

E
c
h, E

e
h, E

e
o , and E

e
c detailed in supplementary as

(εh
p ,ε

h
ω ,εd,ε

o
p,ε

o
ω,εcb ,εcp ,εch ,ε

h
e ,ε

o
e,ε

f
e ). The final ag-

gregated reward is computed as: R = exp(→ε
h
ωE

h
ω →

ε
h
pE

h
p →ε

o
ωE

o
ω→ε

o
pE

o
p→εdEd→εcbE

c
b→εcpE

c
p→εchE

c
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ε
h
eE

e
h → ε

o
eE

e
o → ε

f
eE

e
c )., following a multiplication of the

exponential structure, as suggested in [59, 92].

E. Additional Details on Trajectory Collection
E.1. Interaction Early Termination
In Sec. 3.2 of the main paper, we introduce the termination
conditions defined for human-object interaction. Addition-
ally, we use three conditions general for single human imi-
tation as follows: (i) The joints are, on average, more than
0.5 meters from their reference. (ii) The root joint is under
the height of 0.15. (iii) The episode ends after 300 frames,
as the maximum episode length (also specified in Table C).

E.2. Physical State Initialization
Limitations of RSI. Figure C illustrates why Reference
State Initialization (RSI) [63] is suboptimal for interaction
imitation with imperfect MoCap data. In single-person Mo-
Cap scenarios, where failures are less frequent, RSI per-
forms well; however, in the presence of MoCap errors, RSI

Figure C. A sanity check on why Reference State Initialization
(RSI) [63] can fail: we use a bar representing the reference inter-
action sequence that the policy imitates, where red regions indi-
cate that initializing in those regions leads to immediate failure,
while green regions signify that successful initialization is pos-
sible. There may be periods, shown as two gray blocks, where
the policy cannot collect trajectories for updates (i.e., unreachable
regions), as the successful rollout cannot cover large failed RSI re-
gion given the fixed length of the rollout. In real scenarios, rollouts
can be suboptimal and terminated prematurely, preventing the pol-
icy from collecting sufficient trajectories for challenging periods
that extend beyond the boundaries illustrated by the gray blocks.

leads to reduced experience collection, ultimately under-
mining performance.

Does Interaction Early Termination Help? While early
termination can filter out poor initial states, excessive ini-
tialization failures lead to frequent simulation resets that
significantly slow down training. Consequently, the agent
spends more time restarting simulations rather than engag-
ing in productive learning.

Step-by-step details to complement Sec. 3.2 of the main
paper: (i) PSI begins by creating an initialization buffer
that stores a collection of reference states from motion cap-
ture data and simulation states from previous rollouts. This
buffer is used to select initialization states for future roll-
outs. (ii) For each new rollout, an initialization state is
randomly selected from the buffer. (iii) Using the current
policy, the agent performs rollouts in the simulation envi-
ronment by taking actions, transitioning through states, and
receiving rewards. (iv) After each rollout, the collected tra-
jectories are evaluated based on their expected discounted
rewards to update the critic network. Trajectories with ex-
pected rewards above a defined threshold are added to the
PSI buffer, while older or lower-quality trajectories are re-
moved to maintain the buffer’s size and quality. We apply
PSI in a sparse manner to enhance training efficiency, with a
probability of 0.005 for updating the buffer for each rollout.



Student PolicyText2HOI

Pull a tripod.

Figure D. Overview of integrating HOI-Diff [62] with InterMimic
to perform text-guided interaction generation, i.e., generating in-
teraction sequences based on text input.

F. Additional Implementation Details

In Figures D and E, we illustrate the framework that in-
tegrates the kinematic generators with our InterMimic –
let the policy use the kinematic output as the input refer-
ence to imitate. Table C lists the hyperparameters used
during the PPO [71]. The weights for the reward func-
tion (εh

p ,ε
h
ω ,εd,ε

o
p,ε

o
ω,εcb ,εcp ,εch ,ε

h
e ,ε

o
e,ε

f
e ) are set as

(30, 2.5, 5, 0.1, 5, 5, 5, 3, 2↓ 10↑5
, 2↓ 10↑5

, 10↑9).

For evaluation on the OMOMO [39] dataset, we use Sub-
ject 9 as the base model, with teacher policies retargeting
interactions from other subjects into this base.

Similar to existing motion imitation approaches [63], we
use API in Isaac Gym [54] to initialize the first frame to
match the first reference frame – whether it comes from
MoCap or kinematic generation methods. The subsequent
sequence is then simulated based on the starting frame.

For learning interaction skills on a humanoid robot [24,
81] from SMPL-X [61] data, we bypass external retarget-
ing and directly learn, highlighting our framework’s inte-
grated ability for both retargeting and imitation. Note that
we model each Inspire hand with 12 actuators using PD
control, without accounting for the mimic joint present in
the actual setup, which could be inapplicable in real deploy-
ment. Due to the embodiment gap, the humanoid cannot be
initialized to match the first SMPL-X frame. Thus, we adopt
a two-stage approach: during the first 15 frames, the policy
learns to stand and approach the reference’s initial pose, es-
tablishing a basis for subsequent tracking. Afterward, the
policy transitions to track the reference. We rewrite the po-
sition and rotation rewards for the robot’s joints mapped to
SMPL-X joints. We do not use the contact reward as we
disable the self-collision, since the human reference now
cannot ensure proper collision constraints for the humanoid
robot. To mitigate the impact of contact artifacts in Mo-
Cap data without relying on a contact reward, we leverage
teacher distillation references for training.

For interactions involving multiple objects, our frame-
work remains unchanged except for the state and reward
components related to the objects, such as {ωo

t ,p
o
t ,ε

o
t ,v

o
t},

dt, and the rewards R
o
p, Ro

ω, and Rd, which now include
multiple components to represent multiple objects.

Student PolicyPrediction

Figure E. Overview of integrating InterDiff [101] with InterMimic
to perform interaction prediction, i.e., generating future interac-
tions based on past interaction frames.

Hyperparameters value

Action distribution 153D Continuous
Discount factor ϑ 0.99
Generalized advantage estimation ε 0.95
Entropy regularization coefficient 0.0
Optimizer Adam [33]
Learning rate (Actor) 2e-5
Learning rate (Critic) 1e-4
Minibatch size 16384
Horizon length H 32
Action bounds loss coefficient 10
Maximum episode length 300

Table C. Hyperparamters for training teacher and student policies.

G. Additional Experiemental Results
In this section, we introduce experimental results that are
not included in the main paper due to space limit.
Failure Cases. In Figure F, we illustrate an example where
our teacher policies fail to perform successful imitation.
Despite the strong adaptability of our policies, as demon-
strated in Figures 1 and 5, where they effectively correct
reference errors, there are limitations when encountering
too many errors. Since the reward design inherently pri-
oritizes reference tracking, excessive errors in the reference
inevitably result in failures.
HOI Retargeting. Figure G shows that teacher policies,
trained on reference data for a specific body shape, can suc-
cessfully drive a human model with a body shape differ-
ent from the reference in the simulator to accomplish the
same task, albeit with slightly varied trajectories. This re-
sult highlights the effectiveness of our design, which inte-
grates retargeting into interaction imitation.

H. Discussion
Limitations and Future Work. One limitation, as dis-
cussed in Sec. G and illustrated in Figure F, is that our
method struggles to fully correct MoCap data with signif-
icant errors. However, it also underscores a strength of our
teacher-student framework: teacher policies filter out data
that are too corrupted to imitate, allowing the student policy
to concentrate on learning from viable samples and avoid
wasting training effort on unrecoverable data.



Figure F. For certain reference from OMOMO [39], the hand is
incorrectly flipped, which leads to the failure of the teacher policy.
We exclude such data when training the student policy.

Figure G. Comparison between the reference interaction (human
shown in green) and the simulated interaction (human shown in
yellow) demonstrates that, despite the different body shapes, the
simulated human driven by InterMimic successfully accomplishes
the same task with different trajectories, highlighting the effective-
ness of our imitation as retargeting.

The policy sometimes results in unnatural object sup-
port, where the human produces penetration rather than
relying on friction. While we mitigate this issue by set-
ting a high maximum depenetration velocity in simulation
(See Table A) and applying a contact-based energy (See
Sec. D.4) to discourage large forces that could cause pen-
etration, it does not entirely solve the problem. A potential
solution could involve using a signed distance-based pene-
tration score as a criterion for early termination.

The hand interaction recovery method is effective for the
tasks explored in this paper. For tasks requiring dexterity
with detailed finger motions, its benefits may be limited.

Additionally, while our method demonstrates good scal-
ability by effectively training on hours of MoCap data in-
volving different objects and generalizing to unseen skills
and object geometries, its performance could be further im-
proved with a larger dataset. Incorporating more diverse ob-
jects [97] would likely further enhance InterMimic’s zero-
shot generalization capabilities.
Potential Negative Societal Impact. Our approach has
the potential to generate vivid human-object interaction se-
quences, which, if misused, could lead to negative societal
impacts, with the risk of creating misleading content by de-
picting individuals in fabricated scenarios. However, our
model is designed with privacy in mind – it employs an
abstract representation, using simple geometric shapes like
boxes and cylinders to depict different parts. This abstrac-

tion reduces the inclusion of personally identifiable fea-
tures, making it less likely for our synthesized data to be
misused in ways that compromise individual identities.
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