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1. Datasets

To fully validate the effectiveness of our method, we
perform extensive experiments on four public long-term
sports assessment benchmarks including FS1000 [17], Fis-
V [19], Rhythmic Gymnastics (RG) [22] (three audio-visual
datasets), and LOGO [23] (one visual-only dataset).
FS1000. The FS1000 dataset consists of 1,000 training
videos and 247 validation videos, covering eight categories
of figure skating competitions: men’s/ladies’/pairs’ short
programs, men’s/ladies’/pairs’ free skating, and ice dance
rhythm/free dances. It provides Total Element Score (TES)
and Total Program Component Score (PCS), along with five
additional scores: Skating Skills (SS), Transitions (TR),
Performance (PE), Composition (CO), and Interpretation
of Music (IN). Each video contains approximately 5,000
frames at 25 frames per second. Notably, FS1000 is the first
figure skating sport assessment dataset to encourage audio-
visual learning, enabling rule-consistent multimodal learn-
ing. Following [6, 17], we train separate models for each
score type.
Fis-V. The Figure Skating Video (Fis-V) dataset consists of
500 videos of ladies’ singles short program performances
in figure skating. Each video is approximately 2.9 minutes
long and recorded at 25 frames per second. Following the
official split, 400 videos are allocated for training and 100
for testing. Each video is annotated with two scores: Total
Element Score (TES) and Total Program Component Score
(PCS), in accordance with competition regulations. Consis-
tent with prior works [5, 6, 17–19, 21, 24], we train separate
models to predict each score.
Rhythmic Gymnastics (RG). The RG dataset contains
1,000 videos of rhythmic gymnastics performances involv-
ing four apparatuses: ball, clubs, hoop, and ribbon. Each
video is approximately 1.6 minutes long and recorded at 25
frames per second. The dataset is divided into 200 train-
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Methods Spearman Correlation (↑) Mean Square Error (↓)

TES PCS RG-Avg. TES PCS RG-Avg.

MLP 0.892 0.874 0.824 70.86 7.44 4.80
Shared-Transformer 0.909 0.882 0.831 66.59 6.65 4.68
Dual-Transformer 0.920 0.888 0.840 64.56 6.79 4.53

Action Graph (Ours) 0.917 0.892 0.849 64.89 6.39 4.47

Table 1. Different ways of introducing action knowledge.

ing videos and 50 evaluation videos for each action type.
Consistent with prior studies [5, 18, 21, 22, 24], we train
separate models for each action type.
LOGO. The LOGO dataset is a multi-person, long-term
video dataset comprising 150 training samples and 50 test-
ing samples. The videos are sourced from 26 artistic swim-
ming events, each featuring 8 athletes and averaging 204.2
seconds in duration. LOGO provides formation labels to
represent group dynamics among athletes and includes de-
tailed annotations of action procedures. The LOGO pro-
vides only visual RGB maps, so we validate the effect of the
domain-specific action knowledge introduced by our MAG²
module on visual semantic learning on this dataset.

2. More Ablation Studies
In this section, we will further add some ablation studies to
determine the experimental details. All ablation studies are
performed on the FS1000 and RG if not specifically stated.
Different ways of introducing action knowledge. We
construct text prompt sets based on action terms defined
in the rules of sports events, leveraging language to intro-
duce action knowledge and facilitate action understanding.
To utilize this knowledge for accurate audio-visual learn-
ing, we design a multidimensional action graph guidance
(MAG²) module. This module employs graph neural net-
works to propagate information across graph nodes and ef-
fectively integrates knowledge into visual and audio fea-
tures through constructed edges. As shown in Tab. 1, our
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Figure 1. Framework comparison of cross-modal fusion modules: (a) Transformer decoder—visual features serve as ”queries,” while
audio features act as ”keys-values.” (b) Dual Transformer decoders—one decoder uses visual features as ”queries” and audio features as
”keys-values,” while the other uses audio features as ”queries” and visual features as ”keys-values.” (c) Shared cross-attention—the cross-
attention blocks in the two decoders from (b) share weights. (d) Our audio-visual cross-modal fusion (AVCF) module—a decoder captures
global consistency between actions and music, while modeling the local matches through a convolutional block on a clip-by-clip basis.

#N Spearman Correlation (↑) Mean Square Error (↓)

TES PCS RG-Avg. TES PCS RG-Avg.

3 0.878 0.875 0.819 69.86 6.93 4.85
4 0.892 0.871 0.828 68.04 6.70 4.80
5 0.903 0.867 0.821 66.87 6.63 4.71
6 0.917 0.892 0.849 64.89 6.39 4.47
7 0.898 0.888 0.836 65.47 6.33 4.69
8 0.887 0.894 0.830 66.21 6.41 4.64

Table 2. Different number of grade prompts N .

action graph outperforms commonly used information ag-
gregation methods, such as MLP and Shared-Transformer.
Although the Dual-Transformer also demonstrates compet-
itive performance, it incurs significantly higher computa-
tional costs (1.20M parameters and 0.59G FLOPs). Our
MAG² efficiently processes complex relationships within
graph structures to transfer action knowledge, offering sig-
nificant advantages in computational efficiency and scala-
bility. This also allows our MAG² to be seamlessly inte-
grated as a plug-and-play module to enhance the perfor-
mance of existing methods.
Different number of grade prompts N . Our dual-branch
prompt-guided grading module (DPG) employs two sets of
grade prompts to map visual and audio-visual features into
N visual and 2N audio-visual grades. The effect of varying
N is shown in Tab. 2. The results indicate that performance
improves steadily as N increases from 3 to 6, particularly
for the MSE metric, highlighting the importance of fine-
grained grade modeling for accurate assessment. However,

# Methods Spearman Correlation (↑) Mean Square Error (↓)

TES PCS RG-Avg. TES PCS RG-Avg.

(a) Decoder 0.894 0.876 0.817 66.03 6.62 4.76
(b) Dual-Decoder 0.882 0.866 0.813 70.20 7.11 5.04
(c) Shared-CA 0.911 0.883 0.824 66.86 6.94 4.85
(d) AVCF (Ours) 0.917 0.892 0.849 64.89 6.39 4.47

Table 3. Different audio-visual fusion modules.

when N exceeds 6, performance begins to decline, likely
due to the subtle distinctions among an excessive number
of grade patterns, which may lead to confusion.

Different audio-visual fusion modules. To evaluate the
consistency between actions and musical rhythm, we pro-
pose a novel audio-visual cross-modal fusion (AVCF) mod-
ule for long-term sports assessment. This module em-
phasizes both global and clip-wise alignment between ac-
tions and music. As shown in Tab. 3, we compare AVCF
with prevalent Transformer-based cross-modal fusion mod-
ules [3, 4, 9, 10, 13, 20]. To illustrate the differences be-
tween the modules, we provide a framework comparison
in Fig. 1. The results demonstrate that our method out-
performs existing approaches, which can be attributed to
AVCF’s ability to align each video clip within the global
cross-modal fusion framework, adhering to the assessment
criteria for long-term sports events. Additionally, for fine-
grained clip-wise alignment, we leverage convolutional
blocks to capture local details, achieving excellent perfor-
mance while maintaining low model complexity.



# Methods Spearman Correlation (↑) Mean Square Error (↓)

TES PCS SS TR PE CO IN Avg. TES PCS SS TR PE CO IN Avg.

(1) CoFInAl* [24] 0.835 0.830 0.838 0.836 0.814 0.829 0.819 0.829 81.65 16.05 0.56 0.63 0.71 0.41 0.54 14.36
(2) CoFInAl* [24] + Texts 0.847 0.834 0.842 0.844 0.816 0.834 0.823 0.835↑0.7% 80.86 12.69 0.50 0.58 0.68 0.40 0.50 13.74↓4.3%

(3) CoFInAl* [24] + MAG² 0.858 0.844 0.848 0.851 0.822 0.838 0.827 0.842↑1.6% 79.78 11.82 0.40 0.44 0.63 0.34 0.44 13.41↓6.6%

(4) QTD* [5] 0.876 0.845 0.850 0.857 0.827 0.845 0.841 0.849 137.09 17.48 0.51 0.73 0.80 0.91 0.98 22.64
(5) QTD* [5] + Texts 0.884 0.850 0.854 0.860 0.835 0.849 0.846 0.855↑0.7% 131.51 14.80 0.44 0.69 0.73 0.84 0.90 21.42↓5.4%

(6) QTD* [5] + MAG² 0.889 0.858 0.861 0.864 0.840 0.857 0.853 0.861↑1.4% 119.74 13.89 0.41 0.60 0.66 0.83 0.88 19.57↓14%

(7) PAMFN* [21] 0.897 0.885 0.856 0.866 0.855 0.867 0.845 0.868 104.89 10.05 0.39 0.52 0.78 0.40 0.56 16.80
(8) PAMFN* [21] + Texts 0.899 0.887 0.859 0.867 0.859 0.866 0.850 0.871↑0.3% 104.04 9.69 0.37 0.50 0.69 0.38 0.51 16.60↓1.2%

(9) PAMFN* [21] + MAG² 0.904 0.889 0.862 0.869 0.861 0.869 0.856 0.874↑0.7% 101.18 8.78 0.31 0.43 0.66 0.38 0.42 16.02↓4.6%

(10) MLAVL† (Ours) 0.917 0.892 0.895 0.895 0.876 0.885 0.878 0.892↑2.1% 64.89 6.39 0.23 0.24 0.50 0.25 0.26 10.39↓23%

(11) Texts→LV 0.908 0.887 0.895 0.889 0.873 0.881 0.873 0.887↓0.7% 68.10 6.55 0.23 0.25 0.50 0.25 0.27 10.88↑4.7%

(12) Texts→LV+PE 0.909 0.876 0.892 0.888 0.870 0.883 0.867 0.884↓0.9% 69.78 7.03 0.23 0.25 0.51 0.26 0.29 11.19↑7.7%

Table 4. Effects of grade-related texts and applying our texts and MAG² to existing methods on the FS1000 dataset. LV: Learnable Vectors,
PE: Positional Embeddings. The bold / underline indicate the best / second-best results. The red / blue is performance increase / decrease.

Figure 2. The t-SNE visualization of the initial stage of grade
pattern learning on the FS1000.

Effects of applying our texts and MAG² to existing
methods. To validate the effectiveness of our designed
texts and MAG², we embed them in three 2024 SOTA
works [5, 21, 24], with the results displayed in Tab. 4 (1)-
(10). It can be seen that both our texts and MAG² signifi-
cantly improve the performance. Even compared to the best
performance of the enhanced existing methods (0.874 Avg.
Sp. Corr. and 13.41 Avg. MSE), our methods significantly
improve by 2.1% and 23%. This is a further fair comparison
and demonstrates the strong effectiveness of our method.
Effects of grade-related texts. To validate the effect
of introducing grade-related text prompts, we replace the
text embeddings with common alternatives: learnable vec-
tors [5, 18, 24] (LV in Tab. 4 (11)) and positional embed-

Settings Spearman Correlation (↑) Mean Square Error (↓)

TES PCS RG-Avg. TES PCS RG-Avg.

‘a photo of’ [14] 0.896 0.878 0.838 65.77 6.55 4.61
‘human action of’ [16] 0.912 0.894 0.845 65.01 6.23 4.44

‘a video of’ (Ours) 0.917 0.892 0.849 64.89 6.39 4.47

‘a music of’ 0.911 0.887 0.840 65.39 6.41 4.59
‘a musical rhythm of’ 0.913 0.886 0.836 65.48 6.53 4.54

‘a music suitable for’ (Ours) 0.917 0.892 0.849 64.89 6.39 4.47

Trainable Text Encoder 0.923 0.898 0.858 63.54 6.21 4.36
Trainable Prompt Learning 0.929 0.906 0.865 62.96 6.20 4.18

Table 5. Different text prompt settings.

dings [5] (PE in (12)). The performance of all categories
drops significantly, especially the MSE metric, demonstrat-
ing that our grade-related textual semantics effectively mod-
els the quality-aware space. To intuitively demonstrate the
advantages of texts, we visualize the t-SNE for the initial
stage of grade pattern learning in Fig. 2. Our text prompts
provide precise class semantics, aligning closer to target
class centers early in training.
Different text prompt settings. In this work, we aim to in-
troduce action knowledge in a cost-effective manner. To
achieve this, we manually design fixed text prompt tem-
plates and freeze the text encoder, thereby avoiding the high
computational cost associated with training the backbone
network and implementing prompt learning. Additionally,
the choice of text template settings plays a crucial role in
introducing textual semantics. To evaluate their impact, we
conduct experiments on various text prompt configurations,
with the results presented in Tab. 5. Notably, the prompt
‘a video of’ outperforms ‘a photo of’ in the visual tem-
plate, likely because the term ”video” emphasizes tempo-
ral information. Similarly, ‘human action of’ proves effec-
tive in introducing action-specific knowledge. Among the



Methods Features Spearman Correlation (↑) Mean Square Error (↓)

TES PCS SS TR PE CO IN Avg. TES PCS SS TR PE CO IN Avg.

M-BERT† (Late) [12] TF [1]+AST [7] 0.79 0.75 0.80 0.81 0.80 0.80 0.76 0.79 131.28 15.28 0.44 0.43 0.67 0.47 0.55 21.30
MLP-Mixer† [17] TF [1]+AST [7] 0.88 0.82 0.80 0.81 0.80 0.81 0.81 0.82 81.24 9.47 0.35 0.35 0.62 0.37 0.39 13.26

SGN† [6] TF [1]+AST [7] 0.89 0.85 0.84 0.85 0.82 0.85 0.83 0.85 79.08 8.40 0.31 0.32 0.61 0.33 0.37 12.77

PAMFN†* [21] C3D [15]+VGGish [8]+I3D [2] 0.88 0.85 0.85 0.84 0.85 0.85 0.83 0.85 108.43 11.27 0.42 0.59 0.73 0.51 0.49 17.49
TF [1]+AST [7]+I3D [2] 0.90 0.89 0.86 0.87 0.86 0.87 0.85 0.87 104.89 10.05 0.39 0.52 0.78 0.40 0.56 16.80

MLAVL† (Ours)

C3D [15]+VGGish [8]+BERT [11] 0.90 0.85 0.84 0.85 0.85 0.85 0.84 0.86 71.18 10.29 0.37 0.28 0.68 0.43 0.48 11.96
C3D [15]+VGGish [8]+CLIP [14] 0.92 0.87 0.85 0.86 0.87 0.85 0.85 0.87 67.51 7.66 0.30 0.29 0.49 0.32 0.34 10.99

TF [1]+AST [7]+BERT [11] 0.91 0.89 0.89 0.89 0.88 0.88 0.87 0.89 67.73 6.52 0.24 0.27 0.53 0.27 0.34 10.84
TF [1]+AST [7]+CLIP [14] 0.92 0.89 0.90 0.90 0.88 0.89 0.88 0.90 64.89 6.39 0.23 0.24 0.50 0.25 0.26 10.39

Table 6. Different modal backbones on the FS1000 dataset. The bold / underline / blue indicate the best / second-best / third-best results.
* indicates our reimplementation based on the official code. † indicates using audio information. TF stands for Timesformer.

audio templates, ‘a music suitable for’ achieves the best
performance in our design. While training the text en-
coder yields better results, it incurs a higher computational
cost (25.20M parameters and 395.31G FLOPs). “Trainable
Prompt Learning,” which introduces learnable tokens such
as “a [XXX] video of,” offers additional performance im-
provements but at the expense of increased computational
requirements. These results also demonstrate the potential
of our approach. However, since this study prioritizes cost
efficiency, we use fixed prompts and a frozen encoder.
Different modal backbones. Features extracted from pre-
trained backbones are crucial for long-term sports assess-
ment tasks with poor intra-class discrimination. Stronger
features provided by more advanced backbones enhance
assessment performance, as demonstrated in prior stud-
ies [5, 18, 21, 23, 24]. Multimodal learning methods,
which involve multiple backbones, may be even more sen-
sitive to backbone quality. To evaluate the impact of dif-
ferent backbones, we present results in Tab. 6. Com-
pared to C3D [15]+VGGish [8], the more powerful Times-
former [1]+AST [7] combination extracts stronger audio-
visual features, significantly improving the performance of
PAMFN [21] and our MLAVL. Furthermore, our method
outperforms state-of-the-art approaches even with the clas-
sical BERT [11] text encoder, highlighting its effectiveness
in leveraging language to introduce action knowledge for
guiding audio-visual learning. Performance is further en-
hanced when using the CLIP [14] text encoder, which in-
corporates richer cross-modal knowledge.

3. Additional Implementation Details

Compute resources. All experiments are conducted on
an RTX 3090 GPU with PyTorch 2.4.1 and a 2.40GHz
CPU. For instance, using a batch size of 64 and 500 epochs
with visual, audio, and textual features extracted from pre-
trained backbones, training on the RG dataset requires ap-
proximately three and a half hours.
Label normalization. Our DPG module is designed to

evaluate visual and audio-visual performance by utilizing
grade prompts to model distinct grade patterns. Each pat-
tern corresponds to a specific quality level, with grade
weights defined as Wnv = n−1

N−1 and Wnv·a = n−1
2N−1 .

Following prior works [5, 18, 21, 22, 24], we normalize
the score label range to [0,1] using a constant ξ. For-
mally, for all real score labels {si}Pi=1 in a dataset, the nor-
malized labels s′i are computed as si/ξ. The value of ξ
is determined by the maximum score in the training set.
In our experiments, ξ is set to 130/60/10/10/10/10/10 for
FS1000’s TES/PCS/SS/TR/PE/CO/IN, and to 45/40/25 for
Fis-V(TES)/Fis-V(PCS)/RG, respectively.

To ensure fair comparisons with existing methods, pre-
dicted scores are multiplied by ξ to revert to the origi-
nal score range when calculating the MSE metric. This
approach is consistent with our reimplementation of prior
works [5, 18, 21, 22, 24]. For the LOGO dataset, however,
we adhere to the experimental setup of existing methods
and evaluate the R-ℓ2 metric, which is not constrained to a
specific score range.

Epoch of training. We adopt a cosine annealing strat-
egy to dynamically adjust the learning rate during train-
ing. Consistent with prior works [18, 21, 22, 24], we
use dataset-specific epoch settings across various models to
achieve better convergence. Specifically, for the FS1000
dataset, the epochs are set to 510/540/390/380/400/450/450
for TES/PCS/SS/TR/PE/CO/IN, respectively. For the Fis-
V dataset, the epochs are set to 420/440 for TES/PCS,
while for the RG dataset, the epochs are 620/340/450/710
for Ball/Clubs/Hoop/Ribbon, respectively. For the LOGO
dataset, our method is integrated as a plug-in to existing ap-
proaches and follows the experimental setup reported in the
original method.

LTL between projected text features. Pre-trained back-
bones for different modalities typically extract features with
varying dimensions. To facilitate interaction between mul-
timodal features, we project visual, audio, and textual fea-
tures into a unified dimension d using token projection net-



Sports Action Category

Rhythmic
Gymnastics

walking running leaping jumping skipping ballet feet

ballet hand dance steps bending 360° turn split one leg stand

30 sec. without stopping spirals release circles mills throw and catch

bouncing 3 times roll and recover 3 feet roll and spin pass through swinging figure 8

jump through hopping sliding swaying turning stretching

twisting balance

Figure
Skating

alternating backward crossovers alternating forward crossovers back spin bunny hop change of edge slide chasse

cross stroke dance mode drop Mohawk drop three Dutch Waltz entry

extended facing hold dance steps free sides freestyle mode gliding half-flip

half-Lutz hockey stop pumping moving one-foot snowplow one-foot spin

pivoting power forward crossovers power skating rolling scratch spin slaloming

snowplow stop spiral straight line holds straight line spirals stroking swing

swing roll toe-loop jumping two-foot spin Waltz jump Waltz hold Waltz three

Artistic
Swimming

ballet leg single ballet leg alternate ballet leg double twist spinning twirling

twist spin spin up combined spin continuous spinning boost action cadence action

crane action ibis action Eiffel Tower action Catalina action Catalac action helicopter action

flamingo action flamingo bent knee stingray action Rio straight leg manta ray action knight action

London action swan action swanita action albatross action goeland action barracuda action

blossom action somersault back pike barracuda bent knee flying fish action barracuda airborne split action somersault back tuck

kip action seagull action Kip bent knee kip-swirl action somersault front pike elevator action

somersub action aurora action subalina action subilarc action ballerina action lagoon action

Gaviata action heron action butterfly action Neptunus action Catalina reverse side fishtail split

Minerva action porpoise action front Ariana walkover front prawn action water drop action

cyclone action Ipanema action Saturn action

Table 7. Domain-specific action texts employed in the three assessed sports scenes.

works. The four sets of textual features are represented as
{f t·v

m }Mm=1, {f t·a
m }Mm=1, {f t·v

n }Nn=1, {f t·v·a
n }2Nn=1. To pre-

serve the original textual semantics during the projection
process, we apply a triplet loss LTL to each set of textual
features, ensuring that their discriminative properties are
maintained. Specifically, Ltext

TL = LTL(f
t·v
m )+LTL(f

t·a
m )+

LTL(f
t·v
n ) + LTL(f

t·v·a
n ). The balancing weights for these

losses are equally used λ1.
M action texts for different action scenes. We construct
M multidimensional action texts using the rule files pro-
vided by the official websites of international sports associ-
ations. Specifically, M is set to 32, 42, and 63 for rhyth-
mic gymnastics, figure skating, and artistic swimming, re-
spectively. Tab. 7 provides a detailed breakdown of the
‘[category]’ fields used in the text templates. In future
work, the number of text prompt sets (M ) can be expanded,
and domain-specific action knowledge can be incorporated
from additional perspectives.

4. More Visualizations
Here, we provide more visualizations to illustrate the con-
tribution of our proposed designs to audio-visual learning,
and sports assessment.
Visualization of grade pattern weights. The methods [5,
18, 24] of modeling grade patterns aim to understand action
performance and aggregate video clips into patterns of cor-
responding quality. After normalizing the weights across
grade patterns, videos with lower quality scores should
receive higher weights for lower grades, whereas higher

Label Ascending

Label Ascending

(a) Visual Grade Pattern Weights

(b) Audio-Visual Grade Pattern Weights

Figure 3. Visualization of grade weights on the FS1000 (TES).

scores tend to have higher higher-grade weights. As illus-
trated in Fig. 3, the grade patterns developed by our method
effectively capture the action performance associated with
the respective quality levels, highlighting the effectiveness
of our approach.
Case study. We show some samples containing inputs and
assessed scores in Fig. 4 (a) to visualize the effectiveness
of our approach for audio-visual learning and sports assess-
ment. It can be seen that the single visual modality tends
to ignore some bright performances and produces limited



(a)  Case Study (c)  Performance Trend

(b)  Failure Case

GT Score:121.24

Pred. Score:92.26
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A--Audio

GT Score: 56.97

Pred. Score: 56.91

Pred. V Score: 51.27

Pred. A-V Score: 63.26

GT Score: 66.94

Pred. Score: 66.22

Pred. V Score: 61.62

Pred. A-V Score: 71.39

GT Score: 27.58

Pred. Score: 27.65

Pred. V Score: 19.85

Pred. A-V Score: 36.42

V--VisualPred.--Predicted GT--Ground Truth

Figure 4. Some qualitative examples, including (a) case study, (b) failure case, and (c) performance trend.

(a) 2N-cls audio-visual grade w/o AVCF (b) 2N-cls audio-visual grade w/ AVCF

Figure 5. The t-SNE plots contrasting with and without our AVCF.

scores, while more accurate scores are achieved after in-
tegrating the coordination of the athlete’s movements with
the music. This demonstrates the importance of investigat-
ing assessment models that conform to the rules of real-life
long-term sport.
Failure case and performance trend. To explore the
limitations of our approach, we analyze the performance
trends for different score ranges in FS1000 (TES), as shown
in Fig. 4 (c). We observe that the score error is largest in
the highest score range and show one of the failure sam-
ples in Fig. 4 (b). Our method underperforms in the highest
score range, likely due to the limited training data in this
range, failing to model accurate score mapping.
Visualization of fusion effects of our AVCF. Compared
to existing Transformer-based cross-modal fusion mod-
ules, our approach integrates the global context-capturing
capability of Transformers with the local detail-capturing
ability of convolutional blocks. This design aligns with the
requirements of long-term sports assessment, which em-
phasizes action-music consistency at both the overall and
clip-specific levels. As illustrated in Fig. 5, our AVCF mod-
ule enhances the fusion of visual and audio features more

effectively than existing methods, resulting in more accu-
rate and discriminative modeling of audio-visual grades.
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