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A. Additional Implementation Details
In this section, we provide additional details to facilitate the
implementation and reproducibility of the methods within
the proposed LiMoE framework.

A.1. Datasets
In this work, we conduct extensive experiments across a di-
verse set of LiDAR semantic segmentation datasets to vali-
date the effectiveness of the proposed LiMoE framework.
• nuScenes [5, 9] is a large-scale, multimodal dataset de-

signed for autonomous driving, featuring six cameras,
five radars, one LiDAR, along with IMU and GPS sen-
sors. The dataset comprises 1, 000 driving scenes col-
lected in Boston and Singapore. For the point cloud se-
mantic segmentation task, it provides 1.4 billion anno-
tated points across 40, 000 point clouds, with each Li-
DAR point labeled into one of 32 semantic categories.
The point clouds are captured using a Velodyne HDL-
32E LiDAR sensor. In this work, a mini-train split is
created from the full training set for model pretraining
during the Image-to-LiDAR and CML stages, adhering to

the SLidR protocol [26]. For the SMS stage, the train-
ing set is further split to generate subsets containing 1%,
5%, 10%, 25%, and 100% of annotated scans for fine-
tuning. More details about this dataset can be found at
https://nuscenes.org/nuscenes.

• SemanticKITTI [1] is a large-scale benchmark dataset
tailored for semantic scene understanding in autonomous
driving. The dataset was collected using a Velodyne
HDL-64E LiDAR sensor, capturing diverse real-world
scenarios such as urban traffic in city centers, residential
neighborhoods, highways, and rural countryside roads
around Karlsruhe, Germany. The dataset consists of 22
densely labeled point cloud sequences derived from the
KITTI Odometry benchmark [10], with each point anno-
tated into one of 28 semantic categories. In this work, the
training set is uniformly split to create a subset with 1% of
the scans for fine-tuning. More details about this dataset
can be found at https://semantic-kitti.org.

• Waymo Open [29] is a large-scale, high-quality, and
diverse dataset designed to advance perception in au-
tonomous driving. The dataset features multimodal data
collected using five high-resolution cameras and five Li-
DAR sensors. It includes 1, 150 driving scenes recorded
across a variety of suburban and urban areas, captured at
different times of the day to ensure diversity in lighting,
weather, and traffic conditions. For the LiDAR semantic
segmentation task, each point in the dataset is annotated
into one of 23 semantic categories. In this work, the train-
ing set is uniformly split to create a subset with 1% of the
scans for fine-tuning. More details about this dataset can
be found at https://waymo.com/open.

• ScribbleKITTI [31] is a weakly supervised variant of the
SemanticKITTI [1] dataset, designed to advance research
in semantic scene understanding with minimal annotation
effort. Unlike SemanticKITTI, which provides dense,
point-wise annotations for every LiDAR point, Scrib-
bleKITTI employs sparse line scribble annotations as a
cost-effective alternative. This approach drastically re-
duces annotation requirements, with the dataset contain-
ing approximately 189 million labeled points – around
8.06% of the fully supervised dataset – resulting in a 90%
reduction in annotation time. In this work, the training set
is uniformly split to create subsets with 1% and 10% of
the scans for fine-tuning. More details about this dataset
can be found at https://github.com/ouenal/
scribblekitti.

• RELLIS-3D [11] is a multimodal dataset curated for se-
mantic scene understanding in complex off-road environ-
ments. It consists of five traversal sequences collected
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along three unpaved trails on the RELLIS Campus of
Texas A&M University. For the LiDAR semantic seg-
mentation task, point-wise annotation was generated by
projecting image-based semantic labels onto the point
cloud using precise camera-LiDAR calibration. Each Li-
DAR point is categorized into one of 20 semantic cate-
gories. In this work, the training set is uniformly split to
create subsets with 1% and 10% of the scans for fine-
tuning. More details about this dataset can be found
at http://www.unmannedlab.org/research/
RELLIS-3D.

• SemanticPOSS [22] is a small-scale benchmark dataset
designed for semantic segmentation, with a particular fo-
cus on dynamic instances in real-world off-road environ-
ments. The dataset was captured using a Hesai Pandora
LiDAR sensor, a forward-facing color camera, and four
wide-angle mono cameras. The data was collected on
the campus of Peking University. SemanticKITTI com-
prises 7 sequences, with each point annotated into one of
14 semantic categories. In this work, we adopt sequences
00 and 01 as half of the annotated training scans and se-
quences 00 to 05 (excluding 02 for validation) to create
the full set of annotated scans for fine-tuning. More de-
tails about this dataset can be found at https://www.
poss.pku.edu.cn/semanticposs.html.

• SemanticSTF [33] is a LiDAR point cloud dataset specif-
ically designed to enable robust perception under adverse
weather conditions, which is derived from the STF bench-
mark [3]. The dataset was collected using a Velodyne
HDL-64 S3D LiDAR sensor and includes a diverse set
of 2, 076 scans captured across various weather condi-
tions: 694 snowy, 637 dense-foggy, 631 light-foggy, and
114 rainy scans. Each point in the dataset is labeled with
one of 21 semantic categories. In this work, the train-
ing set is uniformly split to create subsets with 50% and
100% of the scans for fine-tuning. More details about
this dataset can be found at https://github.com/
xiaoaoran/SemanticSTF.

• SynLiDAR [32] is a synthetic LiDAR dataset generated
from various virtual environments. The dataset was cre-
ated using the Unreal Engine 4 platform, capturing di-
verse outdoor scenarios such as urban cities, towns, har-
bors, etc. It consists of 13 LiDAR sequences with a total
of 198, 396 scans, with each point labeled into one of 32
semantic categories. In this work, the training set is uni-
formly split to create subsets with 1% and 10% of the
scans for fine-tuning. More details about this dataset can
be found at https://github.com/xiaoaoran/
SynLiDAR.

• DAPS-3D [12] consists of two subsets: DAPS-1 and
DAPS-2, both captured by a Ouster OS0 LiDAR sen-
sor. DAPS-1 is semi-synthetic, generated to simulate var-
ious real-world cleaning tasks, while DAPS-2 was cap-

tured during a real field trip of a cleaning robot oper-
ating in the VDNH Park in Moscow. In this work, the
training set from the DAPS-1 subset is uniformly split to
create subsets with 50% and 100% of the scans for fine-
tuning. More details about this dataset can be found at
https://github.com/subake/DAPS3D.

• Synth4D [25] is a synthetic dataset captured using a sim-
ulated HDL LiDAR sensor within the CARLA simula-
tor. The dataset consists of two subsets, collected from a
vehicle navigating through four distinct scenarios: town,
highway, rural area, and city. In this work, the train-
ing set from the Synth4D-nuScenes subset is uniformly
split to create subsets with 1% and 10% of the scans for
fine-tuning. More details about this dataset can be found
at https://github.com/saltoricristiano/
gipso-sfouda.

• nuScenes-C [13] is a dataset within the Robo3D bench-
mark, specifically designed to evaluate the robustness of
3D detectors and segmentors under out-of-distribution
scenarios and natural corruptions commonly encountered
in real-world environments. The dataset incorporates
eight types of corruptions: “fog”, “wet ground”, “snow”,
“motion blur”, “beam missing”, “crosstalk”, “incom-
plete echo”, and “cross-sensor” scenarios. Each corrup-
tion type is simulated following physical principles or
engineering guidelines and includes three severity lev-
els: light, moderate, and heavy. More details about
this dataset can be found at https://github.com/
ldkong1205/Robo3D.

A.2. Training Configuration

In this subsection, we present the implementation details of
the LiMoE framework, which is organized into three stages.
• Image-to-LiDAR Pretraining focuses on transferring

knowledge from image representations to LiDAR point
clouds. This stage builds on the methodologies of SLidR
[26] and SuperFlow [35]. We employ the ViT [8] archi-
tecture as the image backbone, pretrained using DINOv2
[21], with three variants: Small, Base, and Large. Input
images are resized to 224× 448 and augmented with ran-
dom horizontal flipping. For the LiDAR-based backbone,
we select FRNet [36], MinkUNet-34 [7], and SPVCNN
[30], corresponding to the range, voxel, and point rep-
resentations, respectively. Point cloud augmentations in-
clude random flipping along horizontal and vertical axes
(with a 50% probability), rotation along the z-axis within
the range of −180◦ to 180◦, and scaling with a factor
sampled uniformly from [0.95, 1.05]. The LiDAR-based
networks are pretrained using eight GPUs for 50 epochs
with a batch size of 4 per GPU. We initialize the learning
rate to 0.01 and employ the AdamW optimizer [19] with
a OneCycle scheduler [28].

• Contrastive Mixture Learning (CML) promotes the in-
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tegration of diverse LiDAR representations into a uni-
fied feature space. In this stage, the pretrained range,
voxel, and point networks are mixed through a Mixture
of Experts (MoE) layer, leveraging their complementary
strengths to form a cohesive single-representation net-
work. To enhance representation diversity, LiDAR point
clouds are augmented with varied parameters, generating
multiple respective views for each representation. The
network is pretrained on eight GPUs for 50 epochs, with
a batch size of 4 per GPU. The initial learning rate is set
to 0.001, and training utilizes the AdamW optimizer [19]
with a OneCycle scheduler [28]. The pseudo-code for
CML is detailed in Algorithm A.

• Semantic Mixture Supervision (SMS) aims to improve
downstream segmentation performance by fusing seman-
tic logits from multiple representations under semantic
label supervision. For individual representation supervi-
sion, the range network is optimized using Cross-Entropy
loss, Lovasz-Softmax loss [2], and Boundary loss [24]
with weights of 1.0, 2.0, and 1.0, respectively. The voxel
network employs Cross-Entropy loss, Lovasz-Softmax
loss [2], weighted at 1.0 and 2.0, while the point net-
work relies solely on Cross-Entropy loss. The MoE-fused
logits are supervised exclusively with Cross-Entropy loss.
The training is conducted on four GPUs for 100 epochs,
with a batch size of 4 per GPU. The initial learning rate
for each representation’s backbone is set to 0.001, and
0.01 for all other parameters. The AdamW optimizer [19]
and a OneCycle scheduler [28] are used for optimization.
The pseudo-code for SMS is detailed in Algorithm B.

A.3. Evaluation Configuration
To evaluate the semantic segmentation performance across
various semantic classes, we employ the widely used
Intersection-over-Union (IoU) metric. The IoU score for
a specific class is computed as follows:

IoU =
TP

TP + FP + FN
, (1)

where TP (True Positive) denotes the number of points cor-
rectly classified as belonging to the class, FP (False Posi-
tive) denotes the number of points incorrectly classified as
belonging to the class, and FN (False Negative) denotes the
number of points belonging to the class but misclassified as
another class. To assess overall segmentation performance,
we report the mean IoU (mIoU), calculated as the average
IoU across all semantic classes.

To evaluate robustness, we adopt the Corruption Error
(CE) and Resilience Rate (RR) metrics, following the setup
established in Robo3D [13]. The CE and RR for a specific
corruption type are computed as follows:

CE =

∑3
i=1(1− IoUi)∑3

i=1(1− IoUbase
i )

, RR =

∑3
i=1 IoUi

3× IoUclean
, (2)

Algorithm A CML, PyTorch-stype

# Point2Range: convert point cloud to range image
# Point2Voxel: convert point cloud to sparse voxel
# Range2Point: project range image to point cloud
# Voxel2Point: project sparse voxel to point cloud
# Group: Group features according to superpoint
# P: point cloud with shape (N, L)
# SP: superpoint
# B_R, B_V, B_P: Range-view, sparse voxel, and point

network
# B_S: Student network for distilling
# D: output channel for each representation network
# Cont: contrastive learning function

class MoE(nn.Module):

def __init__(self, channels):
super(MoE, self).__init__()
self.fusion = nn.Linear(channels*3, channels)

self.w_gate = nn.Parameter(
torch.zeros(channels, 3),
requires_grad=True)

self.w_noise = nn.Parameter(
torch.zeros(channels, 3),
requires_grad=True)

self.softplus = nn.Softplus()
self.softmax = nn.Softmax(1)

def forward(self, range_feats, voxel_feats,
point_feats):

# feature alignment
range_feats = Range2Point(range_feats)
voxel_feats = Voxel2Point(voxel_feats)
fusion_feats = torch.cat(

[range_feats, voxel_feats, point_feats],
dim=-1)

fusion_feats = self.fusion(fusion_feats)

clean_logits = feats @ self.w_gate
raw_noise_stddev = feats @ self.w_noise
noise_stddev = self.softplus(raw_noise_stddev)
noise_logits = torch.randn_like(clean_logits)

* noise_stddev
logits = clean_logits + noise_logits
gates = self.softmax(logits) # (N, 3)
alpha, beta, gamma = gates[:, 0:1], gates[:,

1:2], gates[2:3]
return alpha * range_feats + beta *

voxel_feats + gamma * point_feats

moe_layer = MoE(D)
R = Point2Range(P) # (H, W, L)
V = Point2Voxel(P) # (M, L)
F_R, F_V, F_P = B_R(R), B_V(V), B_P(P)
moe_feats = moe_layer(F_R, F_V, F_P)
student_feats = B_S(P)
# generate superpoint embedding
K = Group(moe_feats, SP)
Q = Group(student_feats, SP)
# loss function
loss = Cont(K, Q)

where IoUbase
i denotes the IoU score of the baseline model

for the corresponding corruption severity, and IoUclean in-
dices the IoU score on the “clean” evaluation set. To mea-
sure overall robustness, we report the mean CE (mCE) and
mean RR (mRR), which are calculated as the average CE
and RR values across all corruption types.

B. Additional Quantitative Results
In this section, we present class-wise LiDAR semantic seg-
mentation results to reinforce the findings and conclusions
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Figure A. Visual interpretations of the expert activation paths in CML. The experts are #1 range view, #2 voxel, and #3 point, respectively.
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Figure B. Ablation study on different backbones for downstream tasks. The backbones are initialized with random weights, SLidR [26],
and LiMoE, respectively, and fine-tuned on the SemanticKITTI [1] and nuScenes [9] datasets using 1% annotations.

presented in the main body of the paper.

B.1. Class-Wise Linear Probing Results

Tab. D showcases class-wise LiDAR semantic segmenta-
tion results on the nuScenes [5, 9] dataset, achieved through
pretraining followed by linear probing. The evaluation cov-
ers all 16 semantic classes, offering a detailed performance
comparison across diverse object categories. LiMoE con-
sistently surpasses single-representation baselines for every
class, including challenging categories like “pedestrian”,
“bicycle”, and “traffic cone”. These results emphasize the
advantage of our approach in utilizing complementary fea-
tures from range images, sparse voxels, and raw points dur-
ing the CML stage to capture high-level semantic correla-
tions effectively.

B.2. Class-Wise Fine-Tuning Results

Tab. E presents class-wise LiDAR semantic segmentation
results on the nuScenes [5, 9] dataset, derived from pre-
training followed by fine-tuning with only 1% of the avail-
able annotations. The results highlight that LiMoE consis-
tently outperforms single-representation baselines across all
classes, with particularly notable gains for dynamic objects
such as “pedestrian”, “bicycle”, and “motorcycle”, which
often exhibit complex structures. These improvements stem

Table A. Detection comparison of state-of-the-art pretraining
methods pretrained and fine-tuned on the nuScenes dataset [5], us-
ing specified data proportions. All methods utilize CenterPoint
[38] as 3D object detection backbones. All scores are given in
percentage (%). The best scores are highlighted in bold.

Method Venue
nuScenes

5% 10% 20%
mAP NDS mAP NDS mAP NDS

Random - 38.0 44.3 46.9 55.5 50.2 59.7
PointContrast [34] ECCV’20 39.8 45.1 47.7 56.0 - -

GCC-3D [16] ICCV’21 41.1 46.8 48.4 56.7 - -
SLidR [26] CVPR’22 43.3 52.4 47.5 56.8 50.4 59.9
TriCC [23] CVPR’23 44.6 54.4 48.9 58.1 50.9 60.3

CSC [6] CVPR’24 45.3 54.2 49.3 58.3 51.9 61.3
SuperFlow [35] ECCV’24 46.0 54.9 49.7 58.5 52.5 61.5

+ LiMoE Ours 47.3 55.3 50.6 59.0 53.2 61.8

from the SMS stage, where the integration of multiple rep-
resentations enables the model to capture complementary
object attributes, enhancing segmentation performance.

B.3. 3D Object Detection

To further evaluate the effectiveness of LiMoE, we extend
our framework to the 3D object detection task. Specifi-
cally, we integrate three heterogeneous representation ex-
perts and distill their knowledge into VoxelNet [37] dur-
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Algorithm B SMS, PyTorch-stype

# Point2Range: convert point cloud to range image
# Point2Voxel: convert point cloud to sparse voxel
# Range2Point: project range image to point cloud
# Voxel2Point: project sparse voxel to point cloud
# P: point cloud with shape (N, L)
# Y: point cloud semantic label with shape (N)
# B_R, B_V, B_P: Range-view, sparse voxel, and point

network
# C: number of classes
# CE: loss function between gt and predict logits

class MoE(nn.Module):

def __init__(self, channels):
super(MoE, self).__init__()
self.fusion = nn.Linear(channels*3, channels)

self.w_gate = nn.Parameter(
torch.zeros(channels, 3),
requires_grad=True)

self.w_noise = nn.Parameter(
torch.zeros(channels, 3),
requires_grad=True)

self.softplus = nn.Softplus()
self.softmax = nn.Softmax(1)

def forward(self, range_feats, voxel_feats,
point_feats):

# feature alignment
range_feats = Range2Point(range_feats)
voxel_feats = Voxel2Point(voxel_feats)
fusion_feats = torch.cat(

[range_feats, voxel_feats, point_feats],
dim=-1)

fusion_feats = self.fusion(fusion_feats)

if self.training:
clean_logits = feats @ self.w_gate
raw_noise_stddev = feats @ self.w_noise
noise_stddev = self.softplus(

raw_noise_stddev)
noise_logits = torch.randn_like(

clean_logits) * noise_stddev
logits = clean_logits + noise_logits

else:
logits = clean_logits

gates = self.softmax(logits) # (N, 3)
alpha, beta, gamma = gates[:, 0:1], gates[:,

1:2], gates[2:3]
return alpha * range_feats + beta *

voxel_feats + gamma * point_feats

moe_layer = MoE(C)
R, Y_R = Point2Range(P), Point2Range(Y) # (H, W, L)
V, Y_V = Point2Voxel(P), Point2Voxel(Y) # (M, L)
L_R, L_V, L_P = B_R(R), B_V(V), B_P(P)
moe_logits = moe_layer(F_R, F_V, F_P)
# loss function
loss = CE(L_R, Y_R) + CE(L_V, Y_V) + CE(L_P, Y) + CE

(moe_logits, Y)

ing the CML stage. For downstream fine-tuning, we fol-
low the detection pipeline of CenterPoint [38]. As shown in
Tab. A, our method achieves substantial improvements over
single-representation learning, further demonstrating the ef-
fectiveness of MoE in unifying multiple representations into
a compact and expressive feature space.

B.4. Representation Diversity
To investigate the role of representation diversity, we con-
duct an ablation study by replacing the three heterogeneous
experts in our framework with three identical sparse voxel-

Table B. Ablation study on incorporating representation diver-
sity. All scores are given in percentage (%).

Method nuScenes KITTI Waymo
LP 1% 5% 1% 1%

Random 8.10 30.30 47.84 39.50 39.41
SLidR [26] 45.35 41.64 55.83 45.50 48.32

3 × MinkUNet 45.51 42.72 56.73 46.35 48.94
LiMoE 46.56 46.89 58.09 47.96 49.50

Table C. Ablation study on mixing strategies for integrating mul-
tiple representations. All scores are given in percentage (%).

Mixing nuScenes KITTI Waymo
LP 1% 5% 1% 1%

Random 8.10 30.30 47.84 39.50 39.41
SLidR [26] 45.35 41.64 55.83 45.50 48.32

Concatenate 45.82 44.75 56.43 46.76 48.53
Addition 45.73 44.82 56.83 46.40 48.71
Average 46.56 46.89 57.12 47.96 49.04
LiMoE 46.56 46.89 58.09 47.96 49.50

based models, all implemented using MinkUNet [7]. The
results, summarized in Tab. B, show that using multiple
identical experts provides only a marginal improvement
over single-representation learning. However, this setting
remains significantly inferior to LiMoE, which integrates
diverse representations. This performance gap underscores
the importance of representation diversity: by leveraging
complementary features from range images, sparse voxels,
and raw points, the MoE layer effectively captures richer
geometric and semantic information, leading to superior
segmentation performance.

B.5. Effectiveness of MoE-Based Mixing
In this work, we employ MoE to selectively aggregate com-
plementary features from multiple representations. How-
ever, alternative feature mixing strategies, such as con-
catenation, addition, and averaging, can also be consid-
ered. To validate the effectiveness of our MoE-based ap-
proach, we conduct an ablation study comparing different
mixing strategies, with results summarized in Tab. C. Our
method achieves the best performance, as it effectively acts
as an attention-based mechanism, dynamically selecting the
most relevant features for each LiDAR point. In contrast,
the other three mixing strategies treat all representations
equally, lacking the ability to adaptively capture comple-
mentary features, which limits their effectiveness.

B.6. Extend to Different Backbones
We evaluate the downstream performance of FRNet [36],
MinKUNet [7], and SPVCNN [30] across various pre-
training strategies, including random initialization, SLidR
[26], and LiMoE. Importantly, the downstream fine-tuning
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does not employ the MoE strategy to combine multiple Li-
DAR representations, ensuring a fair comparison among
the methods. Fine-tuning is conducted on two widely-
used datasets, SemanticKITTI [1] and nuScenes [9], with
only 1% of the annotations available. As shown in Fig. B,
LiMoE pretraining consistently improves the performance
of single-representation methods. This demonstrates the
scalability and generalizable feature representations learned
during the LiMoE pretraining stage, making it effective for
enhancing downstream tasks.

C. Additional Qualitative Results

In this section, we provide additional qualitative examples
to visually compare different approaches presented in the
main body of the paper.

C.1. Route Activations from CML

LiDAR sensors inherently operate with a fixed number of
beams, resulting in a structured arrangement of data points
within the captured point clouds. This beam-based config-
uration provides a natural attribution for the LiDAR point
clouds, with each beam contributing a distinct set of points
that collectively form a comprehensive 3D representation of
the environment. Furthermore, the distance of points from
the ego vehicle often correlates with the orientation and el-
evation of the laser beams. Upper beams are typically de-
signed to detect objects at longer distances, capturing infor-
mation about the far-field surroundings. In contrast, middle
beams are optimized for medium-range detections, while
lower beams primarily focus on capturing close-proximity
objects [14, 15].

To understand how each LiDAR representation con-
tributes to the fused features within the MoE layer, we con-
duct a detailed statistical analysis of export selection pat-
terns during the CML stage. Specifically, we examined the
activation frequency of each representation – range view,
voxel, and point – across varying laser beams and distances
from the ego vehicle, measuring their respective contribu-
tions to the fused outputs. As depicted in Fig. A, distinct
focus areas emerge for each LiDAR representation, align-
ing with their inherent strengths. The range view represen-
tation shows a higher activation frequency in middle-range
regions. The voxel representation demonstrates a signifi-
cant focus on upper laser beams and far-field regions. The
point representation dominates in close-range regions. This
analysis underscores the complementary nature of the three
representations. The MoE layer dynamically selects the
most suitable representation based on the spatial and dis-
tance characteristics of the input, enabling a more robust
and comprehensive understanding of 3D environments.

C.2. Point-Wise Activation from SMS
SMS supervises the feature learning process by integrating
the semantic logits from multiple LiDAR representations
with guidance from semantic labels. To illustrate which
object attributes each representation focuses on within the
LiDAR point clouds, we analyze the contribution of each
representation to the semantic logits during the SMS stage.

Specifically, the MoE layer computes a gating score that
indicates the relative importance of each representation for
individual points. We highlight the most relevant attributes
contributed by each representation and project them onto
the corresponding point clouds. As shown in Fig. C, Fig. D,
Fig. E, and Fig. F, the range view representation predomi-
nantly emphasizes dynamic objects, such as “car”, “truck”,
as well as objects in medium-range regions. The voxel rep-
resentation excels in capturing static background elements,
such as “road” and far-field objects within sparse regions.
The point representation specializes in intricate details, such
as object edges and close-range features, which are crucial
for accurate boundary delineation.

This visualization demonstrates the complementary na-
ture of these representations and underscores the effec-
tiveness of SMS in dynamically leveraging their unique
strengths. By aligning these diverse features, SMS ensures
comprehensive feature learning, leading to improved seg-
mentation performance across varied object types and envi-
ronmental conditions.

C.3. LiDAR Segmentation Results
In Fig. H, Fig. I, Fig. J, and Fig. K, we present qualitative
LiDAR segmentation results, highlighting the performance
of models pretrained on the nuScenes [41] dataset using var-
ious methods and fine-tuned on the SemanticKITTI dataset
with 1% of the available annotations. As depicted, LiMoE
consistently outperforms single-representation approaches
by capturing intricate scene details and achieving a signif-
icant reduction in segmentation errors across challenging
semantic classes. Notably, it excels in handling dynamic
objects such as “pedestrian”, where other methods often
struggle. These results highlight the ability of our multi-
representation fusion framework to integrate complemen-
tary features, leading to more robust and accurate segmen-
tation.

C.4. Cosine Similarity Results
In Fig. G, we provide additional cosine similarity maps
generated during the CML stage. These maps demon-
strate the ability of LiMoE to align features from differ-
ent LiDAR representations, showcasing high semantic cor-
relations across diverse regions of the scene during pre-
training. This alignment reflects the effectiveness of our
framework in fusing information from range images, sparse
voxels, and raw points to capture complementary semantic
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cues. By fostering strong inter-representation consistency,
our method establishes a solid foundation for downstream
tasks, improving the performance and reliability of LiDAR-
based segmentation systems in real-world scenarios.

D. Public Resources Used
In this section, we acknowledge the use of public resources,
during the course of this work.

D.1. Public Codebase Used
We acknowledge the use of the following public codebase,
during the course of this work.
• MMEngine1 . . . . . . . . . . . . . . . . . . . . . .Apache License 2.0
• MMCV2 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MMPretrain3 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MMDetection4 . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MMDetection3d5 . . . . . . . . . . . . . . . . . Apache License 2.0

D.2. Public Datasets Used
We acknowledge the use of the following public datasets,
during the course of this work.
• nuScenes6 . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SemanticKITTI7 . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• WaymoOpenDataset8 . . . . . . . . . Waymo Dataset License
• ScribbleKITTI9 . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown
• RELLIS-3D10 . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0
• SemanticPOSS11 . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0
• SemanticSTF12 . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SynLiDAR13 . . . . . . . . . . . . . . . . . . . . . . . . . . . MiT License
• DAPS-3D14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiT License
• Synth4D15 . . . . . . . . . . . . . . . . . . . . . . . . . .GPL-3.0 License
• Robo3D16 . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

D.3. Public Implementations Used
We acknowledge the use of the following public implemen-
tations, during the course of this work.
• nuscenes-devkit17 . . . . . . . . . . . . . . . . .Apache License 2.0

1https://github.com/open-mmlab/mmengine.
2https://github.com/open-mmlab/mmcv.
3https://github.com/open-mmlab/mmpretrain.
4https://github.com/open-mmlab/mmdetection.
5https://github.com/open-mmlab/mmdetection3d.
6https://www.nuscenes.org/nuscenes.
7http://semantic-kitti.org.
8https://waymo.com/open.
9https://github.com/ouenal/scribblekitti.

10https://github.com/unmannedlab/RELLIS-3D.
11http://www.poss.pku.edu.cn/semanticposs.html.
12https://github.com/xiaoaoran/SemanticSTF.
13https://github.com/xiaoaoran/SynLiDAR.
14https://github.com/subake/DAPS3D.
15https : / / github . com / saltoricristiano / gipso -

sfouda.
16https://github.com/ldkong1205/Robo3D.
17https://github.com/nutonomy/nuscenes-devkit.

• semantic-kitti-api18 . . . . . . . . . . . . . . . . . . . . . MIT License
• waymo-open-dataset19 . . . . . . . . . . . . Apache License 2.0
• SLidR20 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• SuperFlow21 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• FRNet22 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• DINOv223 . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• torchsparse24 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Conv-LoRA25 . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MoE-LLaVA26 . . . . . . . . . . . . . . . . . . . Apache License 2.0

18https://github.com/PRBonn/semantic-kitti-api.
19https://github.com/waymo-research/waymo-open-

dataset.
20https://github.com/valeoai/SLidR.
21https://github.com/Xiangxu-0103/SuperFlow.
22https://github.com/Xiangxu-0103/FRNet.
23https://github.com/facebookresearch/dinov2.
24https://github.com/mit-han-lab/torchsparse.
25https://github.com/autogluon/autogluon.
26https://github.com/PKU-YuanGroup/MoE-LLaVA.
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(a) LiDAR Point Cloud (b) Semantic Ground Truth (c) Point-Wise Activation (All)

(d) Activation of Expert #1 (e) Activation of Expert #2 (f) Activation of Expert #3

Range View Voxel Point

LiMoE

Figure C. Point-wise top-1 activation path in the SMS stage. It highlights the most activated representation for each point during the SMS
stage, illustrating how different representations contribute to semantic segmentation based on spatial and object-specific characteristics.
Best viewed in colors.

(a) LiDAR Point Cloud (b) Semantic Ground Truth (c) Point-Wise Activation (All)

(d) Activation of Expert #1 (e) Activation of Expert #2 (f) Activation of Expert #3

Range View Voxel Point

LiMoE

Figure D. Point-wise top-1 activation path in the SMS stage. It highlights the most activated representation for each point during the SMS
stage, illustrating how different representations contribute to semantic segmentation based on spatial and object-specific characteristics.
Best viewed in colors.
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(a) LiDAR Point Cloud (b) Semantic Ground Truth (c) Point-Wise Activation (All)

(d) Activation of Expert #1 (e) Activation of Expert #2 (f) Activation of Expert #3

Range View Voxel Point

LiMoE

Figure E. Point-wise top-1 activation path in the SMS stage. It highlights the most activated representation for each point during the SMS
stage, illustrating how different representations contribute to semantic segmentation based on spatial and object-specific characteristics.
Best viewed in colors.

(a) LiDAR Point Cloud (b) Semantic Ground Truth (c) Point-Wise Activation (All)

(d) Activation of Expert #1 (e) Activation of Expert #2 (f) Activation of Expert #3

Range View Voxel Point

LiMoE

Figure F. Point-wise top-1 activation path in the SMS stage. It highlights the most activated representation for each point during the SMS
stage, illustrating how different representations contribute to semantic segmentation based on spatial and object-specific characteristics.
Best viewed in colors.
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Table D. The per-class IoU scores of state-of-the-art pretraining methods pretrained and linear-probed on the nuScenes [5, 9] dataset. All
scores are given in percentage (%). The best and 2nd best scores under each group are highlighted in bold and underline.
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Random 8.1 0.5 0.0 0.0 3.9 0.0 0.0 0.0 6.4 0.0 3.9 59.6 0.0 0.1 16.2 30.6 12.0

Distill: None
PointContrast [34] 21.9 - - - - - - - - - - - - - - - -

DepthContrast [40] 22.1 - - - - - - - - - - - - - - - -
ALSO [4] - - - - - - - - - - - - - - - - -

BEVContrast [27] - - - - - - - - - - - - - - - - -

Distill: ResNet-50
PPKT [18] 35.9 - - - - - - - - - - - - - - - -
SLidR [26] 39.2 44.2 0.0 30.8 60.2 15.1 22.4 47.2 27.7 16.3 34.3 80.6 21.8 35.2 48.1 71.0 71.9

ST-SLidR [20] 40.5 - - - - - - - - - - - - - - - -
TriCC [23] 38.0 - - - - - - - - - - - - - - - -

Seal [17] 45.0 54.7 5.9 30.6 61.7 18.9 28.8 48.1 31.0 22.1 39.5 83.8 35.4 46.7 56.9 74.7 74.7
CSC [6] 46.0 - - - - - - - - - - - - - - - -

HVDistill [39] 39.5 - - - - - - - - - - - - - - - -

Distill: ViT-S
PPKT [18] 38.6 43.8 0.0 31.2 53.1 15.2 0.0 42.2 16.5 18.3 33.7 79.1 37.2 45.2 52.7 75.6 74.3
SLidR [26] 44.7 45.0 8.2 34.8 58.6 23.4 40.2 43.8 19.0 22.9 40.9 82.7 38.3 47.6 53.9 77.8 77.9

+ LiMoE 45.8 46.2 8.5 36.2 59.4 23.6 41.7 47.2 20.7 24.1 43.2 83.9 38.7 48.1 55.3 78.0 78.6
Seal [17] 45.2 48.9 8.4 30.7 68.1 17.5 37.7 57.7 17.9 20.9 40.4 83.8 36.6 44.2 54.5 76.2 79.3

SuperFlow [35] 46.4 49.8 6.8 45.9 63.4 18.5 31.0 60.3 28.1 25.4 47.4 86.2 38.4 47.4 56.7 74.9 77.8
+ LiMoE 48.2 50.4 7.9 46.7 65.1 19.2 32.1 61.5 29.5 26.7 48.3 86.5 39.1 48.0 57.4 75.1 78.4

Distill: ViT-B
PPKT [18] 40.0 29.6 0.0 30.7 55.8 6.3 22.4 56.7 18.1 24.3 42.7 82.3 33.2 45.1 53.4 71.3 75.7
SLidR [26] 45.4 46.7 7.8 46.5 58.7 23.9 34.0 47.8 17.1 23.7 41.7 83.4 39.4 47.0 54.6 76.6 77.8

+ LiMoE 46.6 48.2 8.6 47.1 61.1 25.0 35.3 48.6 18.4 24.4 43.4 84.6 39.9 47.4 56.9 77.4 78.9
Seal [17] 46.6 49.3 8.2 35.1 70.8 22.1 41.7 57.4 15.2 21.6 42.6 84.5 38.1 46.8 55.4 77.2 79.5

SuperFlow [35] 47.7 45.8 12.4 52.6 67.9 17.2 40.8 59.5 25.4 21.0 47.6 85.8 37.2 48.4 56.6 76.2 78.2
+ LiMoE 49.1 46.8 13.1 53.9 68.4 19.2 42.2 59.9 27.5 21.7 48.3 85.9 38.2 49.0 57.1 76.3 78.8

Distill: ViT-L
PPKT [18] 41.6 30.5 0.0 32.0 57.3 8.7 24.0 58.1 19.5 24.9 44.1 83.1 34.5 45.9 55.4 72.5 76.4
SLidR [26] 45.7 46.9 6.9 44.9 60.8 22.7 40.6 44.7 17.4 23.0 40.4 83.6 39.9 47.8 55.2 78.1 78.3

+ LiMoE 47.4 48.7 9.2 46.7 62.7 24.2 42.1 46.2 19.7 24.4 43.2 85.3 41.6 49.5 57.4 78.7 79.3
Seal [17] 46.8 53.1 6.9 35.0 65.0 22.0 46.1 59.2 16.2 23.0 41.8 84.7 35.8 46.6 55.5 78.4 79.8

SuperFlow [35] 48.0 52.3 12.7 46.5 64.7 21.4 44.9 56.2 26.7 19.9 43.2 84.2 38.1 47.4 56.9 76.0 79.2
+ LiMoE 49.4 54.4 14.4 47.9 66.1 23.9 46.7 57.2 27.9 20.8 44.8 85.0 39.6 48.1 58.2 76.5 79.6
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Table E. The per-class IoU scores of state-of-the-art pretraining methods pretrained and fine-tuned on the nuScenes [5, 9] dataset with 1%
annotations. All scores are given in percentage (%). The best and 2nd best scores under each group are highlighted in bold and underline.
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Random 30.3 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3

Distill: None
PointContrast [34] 32.5 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6

DepthContrast [40] 31.7 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0
ALSO [4] 37.7 - - - - - - - - - - - - - - - -

BEVContrast [27] 37.9 0.0 1.3 32.6 74.3 1.1 0.9 41.3 8.1 24.1 40.9 89.8 36.2 44.0 52.1 79.9 79.7

Distill: ResNet-50
PPKT [18] 37.8 0.0 2.2 20.7 75.4 1.2 13.2 45.6 8.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9
SLidR [26] 38.8 0.0 1.8 15.4 73.1 1.9 19.9 47.2 17.1 14.5 34.5 92.0 27.1 53.6 61.0 79.8 82.3

ST-SLidR [20] 40.8 - - - - - - - - - - - - - - - -
TriCC [23] 41.2 - - - - - - - - - - - - - - - -

Seal [17] 45.8 0.0 9.4 32.6 77.5 10.4 28.0 53.0 25.0 30.9 49.7 94.0 33.7 60.1 59.6 83.9 83.4
CSC [6] 47.0 0.0 0.0 58.7 74.0 0.1 40.9 58.9 31.8 23.7 45.1 92.5 33.0 56.4 62.4 81.6 84.2

HVDistill [39] 42.7 - - - - - - - - - - - - - - - -

Distill: ViT-S
PPKT [18] 40.6 0.0 0.0 25.2 73.5 9.1 6.9 51.4 8.6 11.3 31.1 93.2 41.7 58.3 64.0 82.0 82.6
SLidR [26] 41.2 0.0 0.0 26.6 72.0 12.4 15.8 51.4 22.9 11.7 35.3 92.9 36.3 58.7 63.6 81.2 82.3

+ LiMoE 46.8 20.6 4.2 29.7 74.7 16.9 24.6 55.7 28.3 19.5 41.5 93.8 41.0 62.4 67.3 82.6 85.2
Seal [17] 44.3 20.0 0.0 19.4 74.7 10.6 45.7 60.3 29.2 17.4 38.1 93.2 26.0 58.8 64.5 81.9 81.9

SuperFlow [35] 47.8 38.2 1.8 25.8 79.0 15.3 43.6 60.3 0.0 28.4 55.4 93.7 28.8 59.1 59.9 83.5 83.1
+ LiMoE 49.6 39.9 4.6 27.3 80.2 17.1 45.4 61.2 6.2 29.5 58.4 94.0 34.2 62.3 64.6 84.1 84.5

Distill: ViT-B
PPKT [18] 40.9 0.0 0.0 24.5 73.5 12.2 7.0 51.0 13.5 15.4 36.3 93.1 40.4 59.2 63.5 81.7 82.2
SLidR [26] 41.6 0.0 0.0 26.7 73.4 10.3 16.9 51.3 23.3 12.7 38.1 93.0 37.7 58.8 63.4 81.6 82.7

+ LiMoE 46.9 22.7 2.6 28.3 75.4 13.5 27.8 55.0 28.5 22.2 40.6 93.7 42.3 61.9 66.8 83.1 85.4
Seal [17] 46.0 43.0 0.0 26.7 81.3 9.9 41.3 56.2 0.0 21.7 51.6 93.6 42.3 62.8 64.7 82.6 82.7

SuperFlow [35] 48.1 39.1 0.9 30.0 80.7 10.3 47.1 59.5 5.1 27.6 55.4 93.7 29.1 61.1 63.5 82.7 83.6
+ LiMoE 50.2 41.5 3.8 32.2 81.7 12.9 49.3 61.1 7.3 29.3 57.8 94.2 35.1 62.9 65.4 84.0 84.8

Distill: ViT-L
PPKT [18] 42.1 0.0 0.0 24.4 78.8 15.1 9.2 54.2 14.3 12.9 39.1 92.9 37.8 59.8 64.9 82.3 83.6
SLidR [26] 42.8 0.0 0.0 23.9 78.8 15.2 20.9 55.0 28.0 17.4 41.4 92.2 41.2 58.0 64.0 81.8 82.7

+ LiMoE 46.9 21.6 1.6 25.2 80.1 17.3 28.0 56.4 28.3 18.6 43.1 92.7 41.7 60.9 65.5 83.8 85.6
Seal [17] 46.3 41.8 0.0 23.8 81.4 17.7 46.3 58.6 0.0 23.4 54.7 93.8 41.4 62.5 65.0 83.9 83.8

SuperFlow [35] 50.0 44.5 0.9 22.4 80.8 17.1 50.2 60.9 21.0 25.1 55.1 93.9 35.8 61.5 62.6 83.7 83.7
+ LiMoE 51.4 45.3 4.1 25.3 82.2 18.4 52.5 61.8 22.3 26.4 56.2 94.3 37.6 63.3 63.9 84.4 85.0
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Figure G. Cosine similarity between the learned features of a query point (denoted as the red dot) and: (1) the features of the image of the
same scene (the 1st, 3rd, and 5th rows); and (2) the features of the LiDAR points of the same scene that are projected onto the image (the
2nd, 4th, and 6th rows). Best viewed in colors.
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Ground Truth Random

SLidR LiMoE (Ours)

Figure H. Qualitative assessments of state-of-the-art pretraining methods, pretrained on nuScenes [5] and fine-tuned on SemanticKITTI
[1] with 1% annotations. The error maps depict correct and incorrect predictions in gray and red, respectively. Best viewed in colors.

Ground Truth Random

SLidR LiMoE (Ours)

Figure I. Qualitative assessments of state-of-the-art pretraining methods, pretrained on nuScenes [5] and fine-tuned on SemanticKITTI [1]
with 1% annotations. The error maps depict correct and incorrect predictions in gray and red, respectively. Best viewed in colors.
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Ground Truth Random

SLidR LiMoE (Ours)

Figure J. Qualitative assessments of state-of-the-art pretraining methods, pretrained on nuScenes [5] and fine-tuned on SemanticKITTI [1]
with 1% annotations. The error maps depict correct and incorrect predictions in gray and red, respectively. Best viewed in colors.

Ground Truth Random

SLidR LiMoE (Ours)

Figure K. Qualitative assessments of state-of-the-art pretraining methods, pretrained on nuScenes [5] and fine-tuned on SemanticKITTI
[1] with 1% annotations. The error maps depict correct and incorrect predictions in gray and red, respectively. Best viewed in colors.
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