
M3GYM: A Large-Scale Multimodal Multi-view Multi-person Pose Dataset
for Fitness Activity Understanding in Real-world Settings

Supplementary Material

A. Necessity of the M3GYM

A.1. Selection of fitness movements
Fitness movements are chosen by biomechanics experts to
enhance body balance and flexibility. These movements
usually feature repetitions, supporting tasks like repetition
counting and action localization. Despite being widely
adopted in gyms, fitness movements remain challenging for
current models due to their complexity. To bridge this gap,
M3GYM includes more complex and uncommon move-
ments, such as Yoga, to support fitness activity analysis.
Along with “good” or “poor” ratings for each action, biome-
chanics specialists also provide explanations on poorly per-
formed actions. These explanations can be employed to
train exercise report generation models.

A.2. Occlusion frame ratios:
We calculate occlusion frame ratios by measuring the over-
lap of bounding boxes and projecting annotated 3D meshes
(if available) to the image planes. M3GYM’s ratio is 82.1%,
significantly higher than 51.7% (CMU Panoptic) and 62.3%
(CHI3D), highlighting the challenges of M3GYM.

B. Details of the Semi-automated Pipeline

B.1. Camera Calibration
A commercial video recording system synchronizes the
eight cameras via hardware synchronization, and two anno-
tators review all video segments to ensure frame-level align-
ment and viewpoint consistency.

We determine the camera parameters using a
chessboard-based calibration method applied in MV-
Pose [13]. For intrinsic calibration, we move a chessboard
with a 9x6 inner corner pattern and a grid size of 0.1 meters
per square across the field of view of all eight cameras. By
capturing approximately 240,000 frames, we extract the
2D coordinates of the chessboard corners for each camera.
These measurements are then used to calculate intrinsic
parameters, including focal length, principal point, and lens
distortion coefficients. For extrinsic calibration, we place
the chessboard at the center of the gym, ensuring visibility
across all cameras.

To verify the accuracy of the camera parameters, we se-
lect one video segment from each view in every session.
These sequences are used for triangulation to evaluate the
quality of 3D reconstruction. Specifically, we analyze 82*8
video segments across the eight cameras and adjust the sam-

pling rate based on reconstruction results. Inspired by Free-
Man [65], we minimize potential recording errors by first
aligning frames across views, then capturing synchronized
frames from each camera, and using LightGlue [43] to com-
pute dense feature correspondences between images. These
correspondences provide additional constraints for pixel-
level adjustments of the camera parameters. Together, these
processes enhance alignment accuracy across views, opti-
mizing calibration parameters for precise multi-view pose
estimation in subsequent tasks.

B.2. 2D Keypoint

From the synchronized videos, we extract frames and ap-
ply multiple 2D pose estimation models [8, 19, 23, 29, 48,
64, 71, 73, 75] to generate diverse 2D annotations for each
frame. To standardize the output, all annotations are con-
verted into the BODY25 [8] format, ensuring consistency
across different methods. This conversion process accounts
for differences in keypoint definitions and formats between
the models. For models such as AlphaPose [19] that provide
whole-body keypoints, the BODY25 keypoints are directly
mapped to their corresponding locations. For models that
output formats like COCO17 [42], specific adjustments are
required. BODY25 includes six additional foot keypoints
absent in COCO17, filled as null values [0, 0, 0]. Addition-
ally, certain keypoints, such as the Neck and Mid Hip, are
calculated as midpoints: the Neck from the shoulders points
and the Mid Hip from the hips points.

We align subjects across 2D pose estimation model out-
puts using Intersection over Union (IoU) of bounding boxes
and Euclidean distance between hip keypoints. A match is
valid when the IoU exceeds SIoU = 0.7 and the hip distance
is below Ship, set to one-twentieth of the image width. IoU
ensures spatial overlap, while hip distance adds anatomical
consistency. When hip keypoints are missing, IoU alone de-
termines the match. A subject is considered valid only if it
is detected by more than half of the models.

We refine 2D keypoint annotations using median voting
and non-max suppression. Median voting considers key-
points with confidence above τvote = 0.5, defining these
as high-confidence keypoints. Keypoints with confidence
below τvote = 0.5 are discarded. For an odd number
of matches, the median point is selected. While for an
even number, the higher-confidence middle point is chosen.
Non-max suppression removes redundant bounding boxes
with IoU exceeding 0.7, prioritizing those with more high-
confidence keypoints and larger areas. Subjects with fewer



Figure 5. Illustration of the Gradio-based 3D keypoint adjustment tool. It displays 3D keypoints reprojected onto 2D views. Users can
locate the keypoint by clicking on the image and adjust its position.

Figure 6. Illustration of the Blender-based 3D keypoint adjustment tool. It provides a 3D visualization of spatial relationships between
subjects and keypoints. Users can perform detailed adjustments to achieve accurate annotations.

than m = 5 high-confidence keypoints or missing the left
or right shoulder are excluded. The dimension of voted 2D
keypoints for each subject is 8× 25× 3, voted by predic-
tions of multiple 2D detectors across 8 views in BODY25
format. Then, we associate the voted 2D keypoints into 3D.
After 3D annotations, we reproject 3D keypoints to each
image plane to obtain annotated 2D keypoints of dimension
25× 2 for each view.

B.3. 3D Keypoint
To generate 3D keypoint annotations, we perform triangu-
lation using filtered 2D keypoint annotations from multi-
ple views. This reconstructs 3D points by calculating inter-

sections of projection rays from different cameras. To re-
fine the 3D keypoints, we apply bone length and smoothing
constraints from HuMMan [6], ensuring anatomical pro-
portions and temporal consistency. Despite these optimiza-
tions, errors can still occur in complex scenarios involving
occlusions or challenging poses.

To address these issues, we develop 3D keypoint adjust-
ment tools. First, we implement a Gradio-based tool, as
shown in Figure 5, which reprojects 3D keypoints onto 2D
views. Users can visually identify errors, click on the image
to locate the nearest keypoint (highlighted with an orange
star in the selected view), and view the corresponding per-
son ID and keypoint index. By clicking “Adjust Keypoint”,



(a) Normal Sessions

(b) Pilates Sessions

(c) Yoga Sessions

Figure 7. Illustration of samples from M3GYM across three session types.

the tool updates the located keypoint to the clicked position.
For complex cases, such as off-center subjects where 2D re-
projections lack sufficient detail, we design a Blender-based
tool, shown in Figure 6. This tool visualizes the spatial rela-
tionships in 3D, enabling users to make precise adjustments
and achieve high-quality final annotations.

B.4. Mesh

Inspired by Freeman [65], we apply SMPLify [5] to fit the
SMPL [45] model to ground truth 3D keypoints, generating
body meshes for each subject and positioning them within
the 3D scene. Sports experts provide detailed notes for each
session, including the subject’s person ID, the sequence and
labels of actions performed, the number of repetitions, time
spent on each action type, an overall assessment (Good or
Poor), and suggestions for improving poor actions. Based
on this information, we divide each subject’s mesh data into
individual actions based on time intervals, assigning the cor-
responding labels and assessments.

To improve the accuracy of these time-based segmen-
tations, we calculate the relative distances between skele-
tons in consecutive meshes. This analysis refines the start
and end times of actions, corrects any errors in the notes
provided by the sports experts, and ensures that transitions
between movements are accurately defined and the annota-
tions align with the observed actions.

B.5. More Annotation pipeline details:
Our pipeline integrates 2D annotation voting and 3D man-
ual adjustment, followed by manual verification, while
FreeMan does not involve manual 3D rectification and vali-
dation. Each session has been cross-validated by two anno-
tators: 10% of frames are manually reviewed, and sessions
with an error rate over 0.5% have been re-annotated. In the
2D median voting stage, our pipeline removes 1.91 false de-
tections and recalls 1.07 inconsistent detections per frame
on average. In the 3D adjustment stage, it modifies 45.8%
of subjects in 18.9% of frames, reducing MPJPE by 65.7
mm. Due to severe self-occlusion, complex actions, such
as Glute-Stretch, requires manual rectification of 71.4% of
subjects in 85.1% of involved frames.

C. Details of M3GYM

As shown in Figure 7, M3GYM includes diverse samples.
This section provides a detailed analysis of the Normal, Pi-
lates, and Yoga session types in M3GYM, along with an
analysis of lighting conditions. For convenience, this sec-
tion uses abbreviations to refer to the samples in Figure 7.
For example, a-1 refers to the first sample of the Normal
sessions, located in the first row, first column.

C.1. Session Types
Normal Session. Normal sessions include basic fitness
exercises such as squat thrusts, planks, and standing calf
raises. In Pilates and Yoga sessions, sports experts guide



participants through each movement. In contrast, normal
sessions involve coaches designing personalized fitness rou-
tines for each participant. Participants complete one set of
an exercise and then move on to the next. Due to differ-
ences in physical ability and experience, participants typi-
cally perform the same exercise only during the initial stage
(a-1). At other times, subjects in the same scene follow their
own routines and perform different exercises, as shown in a-
2, a-3, and a-4. Lighting conditions include well-lit settings
(a-1, a-2 and a-3), sunlight, red (a-5), and purple (a-4).

Pilates Session. Pilates focuses on controlled actions de-
signed to enhance flexibility, strength, and balance. In
M3GYM, Pilates sessions often involve using props such as
small weight plates, resistance bands, and foam mats to as-
sist participants in performing exercises. Compared to nor-
mal sessions, Pilates includes more unique self-occluding
actions and features more sessions with special lighting
conditions, such as red (b-5) and orange (b-4). Notably,
Pilates sessions have the most scenes under sunlight condi-
tions, as shown in b-2 and b-3.

Yoga Session. Yoga emphasizes flexibility, strength, and
mindfulness through a variety of structured actions and con-
trolled breathing techniques. In M3GYM, Yoga sessions
include the most diverse and unique actions, often involv-
ing self-occluding poses. Yoga also has the highest aver-
age number of participants per scene, creating significant
mutual occlusions. These sessions feature all seven light-
ing conditions, including distinctive cases such as blue (c-
2) and gray (c-5). These attributes make Yoga sessions the
most challenging and unique part of M3GYM.

C.2. Lighting Conditions

Sunlight in M3GYM. In M3GYM, sunlight refers specifi-
cally to scenes illuminated only by natural sunlight, unlike
well-lit conditions. These sessions are typically darker due
to the indoor setting. Since sunlight enters only through
the gym’s main entrance, some of the eight camera views
feature significant backlighting. For example, b-2 shows a
view without backlighting, while b-3 includes backlighting,
making it harder to distinguish details of the subjects.

Lighting Intensity. Differences in light sources create
varying lighting intensities across different camera views
under the sunlight condition. Similarly, the five special
lighting conditions beyond well-lit and sunlight produce
different visual appearances across views. For example, in
the red light condition, a-5 and b-5 appear distinct. Like-
wise, in the purple light condition, a-4 and c-4 show differ-
ent intensities. These variations require detection models
with stronger recognition capabilities.

Table 8. Additional baselines for various tasks on M3GYM.
MPJPE/PA-MPJPE (mm) are used for evaluation.

Task Method Inference Fine-tuned

Multi-view 3D VoxelPose [61] 123.0 / 72.3 101.4 / 53.4
SelfPose3d [58] 127.8 / 75.4 98.6 / 51.2

Single-view 3D
on groups

3D Multi-Person Pose [10] 163.7 / 115.9 125.4 / 78.1
RTMW3D [30] 159.0 / 114.3 123.9 / 76.7

Human mesh
recovery

METRO [41] 153.6 / 104.3 124.3 / 70.5
SMPLer-X [7] 151.2 / 103.8 122.7 / 67.9

D. Experiments Settings
D.1. Training Hardware
All experiments are performed on machines configured with
four NVIDIA A100 GPUs, each offering 80GB of mem-
ory. This setup provides the computational power and mem-
ory capacity required to handle large-scale data processing,
complex model training, and evaluation tasks efficiently.

D.2. Evaluation Metrics
Below are the details of the evaluation metrics used in our
experiments.
APk and ARk evaluate 2D pose estimation based on Ob-
ject Keypoint Similarity (OKS). OKS serves as an IoU-like
metric for keypoints and is defined as:
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∑
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)
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where di is the Euclidean distance between detected and
ground truth keypoints, s represents the object scale, ki is a
per-keypoint constant, and vi indicates the visibility of the
ground truth keypoint. This OKS metric measures similar-
ity based on the spatial alignment of keypoints rather than
traditional IoU.
MPJPE (Mean Per Joint Position Error) measures the
mean Euclidean distance between predicted and ground
truth joint positions in 3D pose estimation, defined as:

MPJPE =
1

N

N∑
i=1

∥Jpred,i − Jgt,i∥, (2)

where N is the number of joints, Jpred,i is the predicted 3D
position of the i-th joint, and Jgt,i is the ground truth 3D
position of the i-th joint.
PA-MPJPE (Procrustes-Aligned MPJPE) calculates
MPJPE after aligning the predicted pose to the ground
truth using Procrustes alignment, removing global transla-
tion and rotation errors. The error is then calculated as:

PA-MPJPE =
1

N

N∑
i=1

∥Align(Jpred)i − Jgt,i∥, (3)



where Align(Jpred) represents the predicted joint positions
after Procrustes alignment to the ground truth joints.

D.3. Models and Frameworks
We use publicly available frameworks and models as base-
lines in our experiments and express our gratitude to the
authors of these works for their contributions. The sources
for the models are listed below:
• 2D Pose Estimation: OpenPose [8] (link), DEKR [23]

(link), AlphaPose [19] (link), ViTPose [71] (link),
YOLO-Pose [48] (link, link), YOLOv7-Pose [64] (link),
ED-Pose [73] (link), DWPose [75] (link), RTMPose [29]
(link), and MMPose [12] (link) for model training.

• 3D Pose Estimation: MV-Pose [13] (link), Simple-
Baseline [49] (link), VideoPose3D [52] (link), Motion-
BERT [86] (link).

• Human Mesh Recovery: PyMAF [79] (link), OSX-
SMPL [40] (link), and SMPLer-L [70] (link).

D.4. More benchmark results
In Table 8, we provide more state-of-the-art 3D pose esti-
mation and mesh recovery methods to emphasize the chal-
lenges of M3GYM across diverse tasks.

D.5. More benchmark analysis and insights
Under consistent lighting and visible angles, a model
trained on Normal sessions and tested on Glute-Stretch
(from Yoga) suffers a 9.3% AP drop. This indicates cur-
rent methods still struggle to estimate complex and heav-
ily self-occluded poses. Particularly, occluded keypoints
cause a 5.4% AP drop. Moreover, we observe illumina-
tion conditions also affect pose estimation performance on
M3GYM (2.6% AP drop) even though simple actions are
presented. Since M3GYM contains various occluded and
uncommon poses, MPJPE on M3GYM is higher than that
of other datasets, implying the challenges of our M3GYM.

E. Consent Form of M3GYM Recording
As mentioned in Section 3.1, before participating, all in-
dividuals review the experiment details and sign a consent
form, as shown in Figure 8. The consent process is es-
sential due to the inclusion of body and facial information
in our dataset. While we record body movements and fa-
cial data, no personally identifiable details, such as names,
ages, or occupations, will be released. Facial features are
anonymized to ensure privacy and prevent identification.
The dataset is exclusively intended for academic research
and is not permitted for commercial use.

F. Future work
Outdoor scene collection often requires more sophisticated
camera systems and dedicated venues. Pose estimation will

Figure 8. Consent Form of M3GYM Recording.

be more likely affected by illuminations and object resolu-
tion, and tracking across cameras would impose new chal-
lenges. Since indoor scenes already present many chal-
lenges that existing methods cannot fully solve, we aim to
address these difficulties first and extend our work to out-
door scenes in the future.

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/HRNet/DEKR
https://github.com/MVIG-SJTU/AlphaPose
https://github.com/ViTAE-Transformer/ViTPose
https://github.com/TexasInstruments/edgeai-yolov5
https://github.com/TexasInstruments/edgeai-yolox
https://github.com/WongKinYiu/yolov7
https://github.com/IDEA-Research/ED-Pose
https://github.com/IDEA-Research/DWPose
https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose
https://github.com/open-mmlab/mmpose
https://github.com/zju3dv/EasyMocap
https://github.com/weigq/3d_pose_baseline_pytorch
https://github.com/facebookresearch/VideoPose3D
https://github.com/Walter0807/MotionBERT
https://github.com/HongwenZhang/PyMAF-X
https://github.com/IDEA-Research/OSX
https://github.com/xuxy09/SMPLer
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ter. Extended reality telemedicine collaboration system using
patient avatar based on 3d body pose estimation. Sensors, 24
(1), 2024. 2


	Introduction
	Related Works
	Human Pose Dataset
	Human Pose Estimation
	Human Mesh Recovery
	M3GYM
	Recording Setup
	Action Set
	Semi-automated Pipeline
	Dataset Statistics
	M3GYM Benchmark
	Human Pose Estimation Tasks
	Evaluation Metric
	Benchmark Results
	Discussions and Insights
	Conclusion
	Necessity of the M3GYM
	Selection of fitness movements
	Occlusion frame ratios:

	Details of the Semi-automated Pipeline
	Camera Calibration
	2D Keypoint
	3D Keypoint
	Mesh
	More Annotation pipeline details:
	Details of M3GYM
	Session Types
	Lighting Conditions
	Experiments Settings
	Training Hardware
	Evaluation Metrics
	Models and Frameworks
	More benchmark results
	More benchmark analysis and insights
	Consent Form of M3GYM Recording
	Future work










