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Supplementary Material

A. More Qualitative Results

We present a detailed qualitative comparison between our
approach, MAC-Ego3D, and the previous SOTA multi-agent
dense SLAM method, CP-SLAM [4]. To showcase the gen-
eralization capabilities of MAC-Ego3D, we provide novel-
view RGB and depth rendering results derived from its re-
constructed 3D representations. Additionally, we visualize
the Gaussian splat representation optimized by our multi-
agent Gaussian consensus, showcasing the model’s ability
to achieve photorealistic 3D reconstruction in real time.

To comprehensively demonstrate the spatial coherence of
the rendered RGB-D outputs from the reconstructed 3D map
of MAC-Ego3D and to compare our method with the pre-
vious state-of-the-art, CP-SLAM, we provide an immersive
video demo in the supplementary material. This visual-
ization illustrates that our MAC-Ego3D model generates
high-fidelity, temporally consistent renderings of RGB-D
frames from the reconstructed 3D map, while CP-SLAM’s
predictions often suffer from missing regions, flickering ef-
fects, and spatial and temporal inconsistencies. Readers are
encouraged to refer to the video for more insights.

A.1. More RGB-D Rendering Results

Figures A, B, C, and D provide a detailed comparison of
RGB and depth rendering results between MAC-Ego3D and
CP-SLAM [4]. Across both synthetic (Multi-agent Replica)
and real-world (7Scenes [1]) datasets, MAC-Ego3D consis-
tently delivers superior fidelity, continuity, and robustness in
a variety of reconstruction scenarios.

RGB rendering fidelity. In RGB rendering, MAC-Ego3D
generates continuous, photorealistic reconstructions with
sharper texture details, as shown in Figures A, B, and C. In
contrast, CP-SLAM often struggles in high-frequency tex-
tured areas, producing fragmented and visually inconsistent
outputs, which expose its limitations in capturing complex
geometries during 3D reconstruction. MAC-Ego3D’s unified
Gaussian splat representation, optimized through multi-agent
Gaussian consensus, ensures smoother transitions and en-
hanced fidelity, particularly in regions with high-frequency
details. Moreover, it effectively handles RGB-D video inputs
captured in challenging environments featuring rich seman-
tic objects and dynamic motion. Even in scenarios where
CP-SLAM completely fails to reconstruct details, MAC-
Ego3D demonstrates the ability to capture fine details with
remarkable pose and RGB-D precision.

Depth rendering fidelity. Depth rendering comparisons, il-

lustrated in Figure D, underscore MAC-Ego3D’s superiority
in generating geometrically accurate and consistent depth
maps. In contrast to CP-SLAM, which often exhibits abrupt
discontinuities and fragmented geometry—especially in re-
gions with sparse observations or intricate structures—MAC-
Ego3D preserves depth continuity and structural integrity
across diverse scenes. While minor blurring may occur in
highly textured areas, the Gaussian splat representation opti-
mized via multi-agent Gaussian consensus mitigates depth
overfitting, a common issue with CP-SLAM, and enhances
robustness across a variety of challenging scenarios.

A.2. Novel-View RGB Rendering Results

The novel-view RGB rendering capabilities of MAC-Ego3D
are demonstrated in Figure E and the left columns of Fig-
ures F and G. MAC-Ego3D reliably synthesizes RGB images
from unobserved viewpoints, reconstructing fine details with
remarkable spatial coherence, particularly on the Multi-agent
Replica dataset, which benefits from clean depth observa-
tions. Its ability to seamlessly interpolate between observed
views highlights the strength of the Gaussian splat-based
representation in capturing and generalizing scene details
beyond the training data. This capability establishes a new
benchmark for generalization and photorealistic reconstruc-
tion in multi-agent SLAM systems.

A.3. Novel-View Depth Rendering Results

The right columns of Figures F and G highlight MAC-
Ego3D’s depth synthesis performance for novel viewpoints.
The results demonstrate the model’s capability to accurately
interpolate depth while maintaining geometric consistency
across a range of challenging scenarios, including complex
structures and sparsely observed regions. Notably, MAC-
Ego3D achieves smooth and coherent transitions between
viewpoints, underscoring its robustness in handling diverse
and incomplete depth observations.

A.4. 3D Gaussian Splat Representation

Figures H, I, and J illustrate the reconstructed 3D Gaussian
splat maps, which encode both RGB color and geometry
across various scenes. These visualizations highlight the
spatial coherence and expressive power of the representation.
By effectively balancing computational efficiency and vi-
sual accuracy, MAC-Ego3D enables real-time collaborative
SLAM with high photorealistic fidelity.

Figure K visualizes the 3D Gaussian splat representation
before and after the pruning process. The raw Gaussian



Table A. Comparison on single-agent Replica dataset.

Methods | PSNR [dB] T ATE [cm] |
Single-Agent 3DGS SLAM
GS-SLAM [10] [CVPR™24] 34.27 0.50
SplaTAM [5] [CVPR 24] 33.89 0.36
MonoGS [6] [CVPR 24] 38.94 0.32
RTG-SLAM [8] [SIGGRAPH 24 ] 35.43 0.18
GS-ICP-SLAM [2] [ECCV’24] 38.83 0.16
Multi-Agent 3DGS SLAM (for Single-Agent Evaluation)
MAC-Ego3D' (Ours) [ 39.02 0.15

t denotes incomplete methods without multi-agent optimization.

splats (left panels in Figure K) often include redundant and
elongated primitives that adversely affect rendering quality.
Our pruning method, outlined in Algorithm 1, effectively
removes these artifacts, resulting in a compact and visually
accurate 3D representation (right panels in Figure K). This
pruning process enhances rendering fidelity by addressing
over-redundancy and aligning splats more precisely.

B. Additional Experiments on Single-Agent
Replica Dataset

While the true novelty and focus of our proposed method
MAC-Ego3D is on the multi-agent collaborative setting, we
have conducted additional evaluations using the single-agent
Replica dataset [9] (Table A) to provide more results under
the single-agent setting.

By disabling the collaborative multi-agent optimization
within MAC-Ego3D, we find that the system still achieves
on-par performance or superior performance than prior
SOTA single-agent SLAM methods in both reconstruc-
tion and tracking. This highlights the effectiveness of
our 3DGS representation, particularly through the proposed
Intra-Agent Gaussian Consensus. This approach remains
highly capable even without multi-agent collaboration.

C. Hyperparameter Sensitivity Analysis
C.1. Similarity Threshold

Figures L and M illustrate the impact of the similarity thresh-
old 7 on MAC-Ego3D’s performance for inter-agent overlap
detection on the Multi-agent Replica and 7Scenes datasets,
respectively. The results indicate that MAC-Ego3D is robust
to variations in 7 within a local range of the default value.

Trajectory estimation quality, measured by ATE. On both
datasets, larger 7 values result in more aggressive overlap
detection, slightly increasing trajectory errors due to reduced
multi-agent collaborative map and pose optimization. Overly
restrictive thresholds may miss valid overlaps, causing minor
degradations in accuracy. Conversely, smaller 7 values can
increase false positives, occasionally leading to minor im-
provements in ATE. The default 7 strikes a balance between

these competing effects, ensuring stable performance.

Mapping fidelity, measured by PSNR, SSIM, and LPIPS.
Metrics for mapping fidelity remain largely unaffected by
variations in 7, reflecting MAC-Ego3D’s ability to produce
visually coherent outputs despite differences in inter-agent
overlap quality. These findings highlight the model’s robust-
ness, as small variations in 7 do not significantly impact
rendering quality or mapping accuracy.

C.2. Communication Interval T¢,,,,..

Figures N and O illustrate the sensitivity of MAC-Ego3D’s
performance to the communication interval 7oy, On the
Multi-agent Replica and 7Scenes datasets. The results
demonstrate that MAC-Ego3D maintains robust and consis-
tent performance across a local range of the default Ticpym, -

Trajectory estimation quality, measured by ATE. Shorter
communication intervals (i.e., more frequent collaboration
between agents) improve trajectory accuracy by enabling
more frequent sharing and updates of the 3D map. This
synchronization reduces inter-agent drift and ensures consis-
tent alignment of Gaussian splats. In contrast, larger inter-
vals, while more computationally efficient, introduce slight
increases in trajectory error due to reduced inter-agent in-
formation sharing. The default 7o, achieves an optimal
balance between computational efficiency and ATE perfor-
mance, making MAC-Ego3D suitable for both real-time and
high-accuracy ego-motion estimation and 3D reconstruction.

Mapping fidelity, measured by PSNR, SSIM, and LPIPS.
Metrics such as PSNR and SSIM remain largely stable across
different Tcomy, values, with marginal improvements ob-
served at shorter intervals. Similarly, LPIPS remains con-
sistently low, indicating high visual quality. These findings
suggest that inter-agent communication frequency has min-
imal impact on rendering fidelity, further emphasizing the
robustness of MAC-Ego3D’s multi-agent collaborative ego-
motion estimation and 3D mapping framework.

C.3. General Hyperparameter Robustness

The sensitivity analyses confirm the robustness of MAC-
Ego3D’s key hyperparameters, such as the similarity thresh-
old 7 and communication interval T op,m, in multi-agent
consensus optimization. Across a range of values, the model
demonstrates stable performance without requiring precise
tuning, underscoring its adaptability to varied cases.
Notably, the default hyperparameter settings strike a bal-
ance between computational efficiency and performance
across both trajectory estimation and mapping fidelity met-
rics. The stability of T ensures reliable overlap detection for
multi-agent collaborative mapping, even in challenging sce-
narios with sparse or noisy observations. Similarly, T omm
balances the trade-off between frequent inter-agent synchro-
nization for improved trajectory accuracy and computational



Algorithm 1 Gaussian Splat Pruning
Input: Opacity threshold 7, scale threshold 7, elongation
threshold 7, original Gaussian set M
Output: Pruned Gaussian set M’
1: Initialize: Myrype < 0
2: Opacity Pruning: M paciy < {Gi | Ai < 75}
3: Mprune <~ Mprune ) Mopacily
4: if 7, # & then
5
6
7

Scale Pruning: M, < {G; | max(s;) > 74}
Mprune — Mprune ) Mlarge
: Elongation Pruning: M.iongated
max(s;) > 7. - (D (s;) — max(s;))}
Mprune — Mprune U Melongated
9: end if
10: Remove Gaussians: M’ < M\ M e
11: Return: M’

*®

efficiency required for real-time applications.

D. More Implementation Details
D.1. Gaussian Splat Pruning for Mapping

In the MAC-Ego3D framework, we enhance the 3D Gaus-
sian map representation by introducing a pruning process to
remove Gaussians that contribute minimally or negatively to
the scene representation. Each Gaussian G is characterized
by its mean position x;, covariance matrix 3;, opacity \;,
and scale dimensions s; = {s;1, S;2, $i3 }. The pruning pro-
cess focuses on three key objectives: eliminating Gaussians
with low opacity, excessively large Gaussians, and elongated
Gaussians that can introduce artifacts in the final rendering.
Opacity pruning. The pruning process begins by evaluating
the opacity \; of each Gaussian. Gaussians with opacity be-
low the threshold 7, are considered negligible and removed:

Mopacity = {Gz | >\z < To}- (1)

By default, 7, is set to 0.005.

Scale pruning. To address excessively large Gaussians, the
maximum scale dimension max(s;) is examined. Gaussians
exceeding a fraction of the scale threshold 7, are flagged for
removal:

Mlarge = {Gl ‘ max(si) > TS}. 2)

Here, 75 is set to 0.25 by default.

Elongation pruning. Rendering artifacts caused by elon-
gated Gaussians are mitigated by introducing an elongation
criterion. A Gaussian is classified as elongated if its largest
scale dimension exceeds 7, times the sum of the other two
dimensions:

Meiongaed = {Gii | max(s;) > 7. - (Z(SZ) — max(s;))}.
3)

In our implementation, 7, is set to 10 to target needle-like ar-
tifacts. As illustrated in Fig. K, this step effectively removes
elongated Gaussians, significantly improving the fidelity of
the rendered images.

Combined pruning. The final pruning mask combines all
three criteria:

Mprune = Mopacity ) Mlarge U Melongated- (4)

The flagged Gaussians are removed from the map:
M M\ Mprune- (5)

This pruning process ensures a compact and efficient 3D
map representation while maintaining high visual fidelity
in the rendered scenes. The full procedure is detailed in
Algorithm 1.

D.2. Keyframe Sampling for Pose Tracking

Building on prior work in Gaussian splatting SLAM [3, 7],
we employ an adaptive keyframe sampling strategy to en-
hance pose tracking efficiency. This method leverages geo-
metric correspondences derived from G-ICP to selectively
sample keyframes based on a correspondence threshold, en-
suring consistent tracking performance while maintaining a
uniform Gaussian density within the map.

Unlike the selective approach used for tracking, every
one of ten frames are utilized during mapping to fully ex-
ploit the RGB-D observations collected across all agents.
This dual strategy enhances robustness by incorporating only
non-overlapping Gaussians during pose tracking, thereby
reducing accumulated tracking errors. It also achieves an
optimal balance between tracking efficiency and mapping
completeness, maximizing overall reconstruction accuracy.
The geometric correspondence threshold for triggering pose
tracking follows the setup described in [3].

D.3. Construction of Testing Cases on the Real-
World 7Scenes Dataset

To evaluate the performance of our method under real-world
conditions, we construct testing cases using the 7Scenes
dataset, which features diverse indoor environments with
complex visual and geometric structures. The testing setup
is carefully designed to benchmark our approach through
comparisons with prior methods and ablation studies, assess-
ing its adaptability and robustness.

Benchmarking performance against CP-SLAM. Since
CP-SLAM supports only two-agent collaboration, we con-
figure testing cases by selecting two sequences from each
scene in the 7Scenes dataset. For most scenes, sequences
seg-01 and seg-02 are used, as they provide sufficient
spatial overlap to enable collaboration. However, for the
redkitchen scene, we use sequences seg-01 and seg-03,
as these sequences cover complementary areas, ensuring



Table B. Multi-agent testing case configurations for the ablation
studies on the 7Scenes dataset.

Scene Testing Case Sequences

1.1 01, 02, 03
Chess 1.2 04, 05, 06

1.3 01, 03, 05
Fire 2.1 01, 02, 03, 04
Heads 3.1 01, 02

4.1 01, 02, 03

4.2 04, 05, 06
Office 43 07, 08, 09, 10

4.4 01, 02, 04

5.1 01, 02, 03, 04

. 52 05, 06, 07, 08

Redkitchen 53 11,12, 13, 14

5.4 01,03, 04

6.1 01, 02, 03
Stairs 6.2 04, 05, 06

6.3 01, 02, 04

diverse and representative results. This setup allows for fair
and consistent performance comparisons with CP-SLAM.

Testing cases for multi-agent collaboration in ablation
studies. To evaluate our method’s flexibility in supporting
multi-agent collaboration with varying numbers of agents,
we select sequences from the same scene with overlapping
spatial regions to simulate realistic collaboration scenarios.
Sequences are grouped based on their serial numbers to en-
sure even distribution and adequate overlap for inter-agent
collaboration. Further, we select the best-performing se-
quence groups to conduct additional experiments, providing
deeper insights into our method’s adaptability. The configu-
rations for all testing cases are detailed in Table B.

E. More Details on Evaluation Metrics

Following prior works in dense Neural SLAM [3-5], we eval-
uate the proposed system using metrics including Absolute
Trajectory Error (ATE), Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), Learned Per-
ceptual Image Patch Similarity (LPIPS), and Depth L1 Error.
These metrics assess the fidelity of predictions relative to
clean ground truth under two input conditions: (i) clean
RGB-D observations Z{?, = {(Iy,D})}:_, for agent a;,
under the standard evaluation settings and (ii) partially per-
turbed observations in either the RGB I}’ or depth D}’
modalities under the robustness evaluation settings.

Specifically, ATE evaluates the spatial alignment between
the estimated trajectory T77, and the ground truth trajectory

T$T as the root mean square error:

N
1 o
ATE = N;ﬂHTk — TGT2, (6)

PSNR quantifies the pixel-level fidelity of the reconstructed
RGB image I} relative to the ground truth I¢T:

2
MAX) [dB], (N

PSNR = 10 - log,, ( VISE

where MAX is the maximum pixel intensity and MSE is the
mean squared error.

SSIM evaluates structural similarity, incorporating lumi-
nance, contrast, and structural information:

(QHny + Cl)(Qny + C2)
(2 + 43+ Cr)(oE + 03+ )’

SSIM = ®)

where (i, (ty, 04, and o, denote the means and variances of
I{ and I¢T, while 0, represents their covariance.

LPIPS [11] measures perceptual similarity between the
predicted RGB image I}’ and the ground truth IGT, based on
feature-level differences from a pre-trained neural network.
The LPIPS score is:

LPIPS = Y w; - [&n(If) — o(IOIZ )
l

where ¢;(-) denotes feature maps from the [-th layer of a
pre-trained network, with w; as learned layer weights.

Finally, Depth L1 Error quantifies the geometric accuracy
of the predicted depth D}’ compared to the ground truth
depth DYT:

N
1 @
Depth L1 = N;—l D¢ — DS (10)
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Figure A. Qualitative RGB image rendering quality comparison between multi-agent SLAM models with dense reconstruction
capability, i.e., CP-SLAM and our MAC-Ego3D, on the Multi-agent Replica dataset.
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capability, i.e., CP-SLAM and our MAC-Ego3D, on the Multi-agent Replica and 7-Scenes dataset.
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Figure C. Qualitative RGB image rendering quality comparison between multi-agent SLAM models with dense reconstruction
capability, i.e., CP-SLAM and our MAC-Ego3D, on the 7-Scenes dataset.
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Figure D. Qualitative depth image rendering quality comparison between multi-agent SLAM models with dense reconstruction
capability, i.e., CP-SLAM and our MAC-Ego3D, on Multi-agent Replica (Left) and 7-Scenes (Right) datasets.



Figure E. Novel-view RGB image synthesis results via the proposed MAC-Ego3D model.



Figure F. Novel-view RGB and depth image synthesis results via the proposed MAC-Ego3D model.
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Figure G. Novel-view RGB and depth image synthesis results via the proposed MAC-Ego3D model.



Figure H. Visualization of reconstructed 3D map with Gaussian splat representation.



Figure I. Visualization of reconstructed 3D map with Gaussian splat representation.



Figure J. Visualization of the coordinate centers (shown in blue points) of reconstructed 3D map with Gaussian splat representation.
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Figure K. Qualitative comparison of Gaussian splat pruning. The left column shows the raw Gaussian splats, while the right column
presents the results after pruning. The pruning process effectively removes redundant or elongated splats, enhancing the rendering quality.



(a) Agent 1
50
0151 0.143 0.138 0.140 40 39.670 40.245 39.782
5 -
= 0101 o 397
Y % 20
o ]
= 0.05 1 o
< 104
0.00 0-
0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
1.004 0.976 0.978 0.976 0.0610.056
0.050 0.050
< 0.751 i i
s 0 0.04
» 0.50 A o
N = 0.024
0.251
0.00 0.00-
0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
(b) Agent 2
0.1590.140 0.143 0.143 39.352 39.815 39.785

—0.10

0.05 4

0.00 -

ATE ! [cm
PSNR T
- = B g8 &

0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
1.004 0.974 0.976 0.976 0.064 20.059
0.050 0.052
075 ;
Z £ 0.04 4
.50
Z 5
0.02
0.25 4
0.00 -+ 0.00 -+
0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
(c) Average
50
0.154 0.141 0.140 0.141 39.511 40.030 39.784

= 0.104

0.051

0.00 -

ATE ! [cm]
PSNR T
s 3 8 8 8
ATE | [cm]
L v
PSNR T
s v 278

0.8
Threshold T

0.8
Threshold T

1.00
« 0751
@ 0504
2]

0.25+

0.00 -

0.975

0.977

LPIPS

0.8
Threshold T

0.976 0.06 4
0.04 4

0.02 4

0.00 -

0.058

0.050

0.8
Threshold T

0.051

Figure L. Hyperparameter sensitivity analysis of the threshold
7 for inter-agent overlap detection on Multi-agent Replica.

(a) Agent 1

10 25 ]
8.130 8.105 21.112 20.772 21.037
'g 81 20
5 6.485 -
L 64 o 151
oo &
w 1 10
[ a
< 24 54
0+ o
0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
0.8{ 0.783 0.771 0.780 0.31 0.280 0.290 0.285
< 0.6 -
= 021
0 0.4 o
0
— 0.1
0.2
0.0 0.0
0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
(b) Agent 2
54 254
4.362 21.325 21.265 21.030

3.960 201
3.257

ATE ! [cm]
S T v v %

PSNR T
° 2 2 7

0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
084 0775 0.776 0.774 031 0278 0.275 0.281
« 0.6 g
0.24
= 4
@ 0.4 =
@ H 0.14
0.24
0.0- 0.0 -
0.7 0.8 0.9 0.7 0.8 0.9
Threshold T Threshold T
(c) Average
254
6.233 21.218 21.018 21.033

5223 5.693

0.8
Threshold T

0.8
Threshold T

0.779 0.773 0.777 0.3 4

0.8 1

067 0.24

0.4

SSIM 1T

LPIPS 1

0.14
0.24

0.0 0.0 -

0.8
Threshold T

0.279 0.283 0.283

0.8
Threshold T

Figure M. Hyperparameter sensitivity analysis of the similarity
threshold 7 for inter-agent overlap detection on 7Scenes.



(a) Agent 1 (a) Agent 1

0.25 ]
50 151 25
"= 0.201 40 39.040 40.245 39.330 = 20.997 21.019 20.848
IS IS 204
o o «
— 0.151 0.138 0.138 0.135 o 301 = 104 « 15
- = - 6.600 7.312 =
w 0.104 v 20 w . 5.693 v 41
= o = s o 10
< 0.051 101 < 5]
0.00- 0+ 0- 0+
150 100 200 150 100 200 40 60 80 40 60 80
Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm
0.125 1.04 0.4
1.00 0974 0078 0074 0,100 0.8 0775 0.773 0.774
' 0.3{ 0.283 0.283 0.284
- - P -
0751 o 0.0751 061 n
= a 0.060 0.062 = a 0.2
O 0.50 A = ] 0.050 D o4l = 0.
a & o.050 Qoa 5
0.251 0.025 1 0.24 0.11
0.00- 0.000 - 0.0 0.0
150 100 200 150 100 200 40 60 80 40 60 80
Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm
(b) Agent 2 (b) Agent 2
504 151
0.20 25 1
404 38.267 39.815 39.325 20.900 20.883 20.700

0.148
0.i28 0.143
6.850

6.067 5.400

ATE ! [cm]
s o o o
g2 3 = o
PSNR T
s = B 8
ATE ! [cm]
> 9 3
PSNR T
> v 373

150 100 200 150 100 200 40 60 80 40 60 80
Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm
1.0 041
0.10 4
1.004 0972 0.976 0.974 0sl 0773 0.767 0.767
1 034 0.281 0.281 0.282
“ 0751 - %7 .06 “ ol R
s A .06 0.058 s %]
B oso g v 0.050 = £ 021
@ 0.50 @A 04
A & 0041 504 5
0.25 1 0.02 ] 021 0.14
0.00 -+ 0.00 -+ 0.0+ 0.0+
150 100 200 150 100 200 40 60 80 40 60 80
Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm
(c) Average (c) Average

o
=3
@

404 38.654 40.030 39.328 20.948 20.951 20.774

01510133 0.140 0.141

7,081
6.333 5,547

ATE ! [cm
s o o
g2 3 =
PSNR T
- 5 2 3
ATE ! [cm]
s v 3
g
%E
B
PSNR T
> w352
5
3
3

0
150 100 200 150 100 200
Communication Interval Tcomm Communication Interval Tcomm Communication Interval Tcomm Communication Interval Tcomm
104 04
1004 20.973 0.977 0.974 0.100 | 084 0.774 0.770 0.770
N 5 031 0.282 0.282 0.283
“ 0.75 o 00751 0064 < 064 -
= a 0.050 0.060 = & 02
7 0501 = < A A 041 =
% 3 0.050 % 0.4 5
0.251 0.025 1 0.2 011
0.00 - 0.000 - 0.0 0.0
150 100 200 150 100 200 40 60 80 40 60 80
Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm Communication Interval Teomm
Figure N. Hyperparameter sensitivity analysis of the inter-agent Figure O. Hyperparameter sensitivity analysis of the inter-agent

communication interval Tcom:m on Multi-agent Replica. communication interval T, on the 7Scenes dataset.
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