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Global Marine Fog Detection and Forecasting

Supplementary Material

An overview of Supplementary Material for MFogHub
dataset is provided below.
• Sec. 1 and Sec. 2 provide foundational information

about the dataset, including access to the dataset and
code, as well as multi-regional details in MFogHub.

• Sec. 3 and Sec. 4 show the data preparation process, in-
cluding marine fog annotation and sample visualization.

• Sec. 5 introduces the evaluation metrics used for assess-
ing model performance.

• Sec. 6 presents more experimental results, covering
multi-regional and satellite generalization, multi-region
marine fog forecasting, and the impact of different
positive-to-negative sample ratios across regions.

1. Dataset and Code Access
To comply with the CVPR anonymity guidelines and
address GitHub’s storage limitations, we have created
an anonymized GitHub repository containing representa-
tive examples from MFogHub along with processing and
benchmark code. The complete dataset and benchmark will
be made publicly available upon acceptance of the paper.
The anonymized repository is accessible at: https://
anonymous.4open.science/r/MFogHub-DE63/.

2. Multi-Regional Information in MFogHub
The detailed information of the global multi-regional areas
proposed in MFogHub is presented in Table 1, spanning
multiple continents and oceans, and covering several im-
portant coastal cities and ports around the world. The ab-
breviations of Continents or Oceans1 are provided below.
Due to the proximity of the sub-satellite points of the FY4
series and H8/9 series satellites2, both can collaboratively
monitor most regions of the Western Pacific. This collabo-
ration allows for mutual supplementation and significantly
enhances detection capabilities.

3. Annotation of Marine Fog
Before annotating the marine fog images, it is essential to
identify which time periods and maritime regions contain

1The abbreviations of Continents are: Asia (AS), Africa (AF), North
America (NA), South America (SA), Antarctica (AN), Europe (EU), Aus-
tralia (AU). The abbreviations of Oceans are: Pacific Ocean (PO), At-
lantic Ocean (AO), Indian Ocean (IO), Southern Ocean (SO), Arctic Ocean
(ArO).

2The FY4 series satellites have a sub-satellite point at approximately
104.7°E, while the H8/9 series satellites have a sub-satellite point at ap-
proximately 140.7°E.

Table 1. Detailed information for multi-regional areas proposed in
MFogHub, including Regions designation, Abbreviation (regions
abbr.), Continent and oceans, Location, Supported satellite data,
and corresponding Major City/Port.

Regions Abbr. Continent/ Locations Satellites Major City/
Oceans Latitude range Longitude range Port

Yellow and Bohai Seas Y.B. AS/PO 28.7◦N-41.5◦N 116.2◦E-129.0◦E FY4A, FY4B, H8/9 Tianjin
China East Sea E.S. AS/PO 20.0◦N-32.8◦N 117.0◦E-129.8◦E FY4A, H8/9 Shanghai
China South Sea S.S. AS/PO 11.2◦N-24.0◦N 105.0◦E-117.8◦E FY4A, H8/9 Hong Kong

Mediterranean (East) M.E. EU/AO 37.2◦N-50.0◦N 27.0◦E-39.8◦E MeteoSat Athens
Mediterranean (Central) M.C. EU/AO 30.0◦N-42.8◦N 15.0◦E-27.8◦E MeteoSat Rome
Mediterranean (West) M.W. EU/AO 33.0◦N-45.8◦N 0.0◦-12.8◦E MeteoSat Barcelona
North Sea N.S. EU/AO 47.2◦N-60.0◦N 7.8◦W-5.0◦E MeteoSat Rotterdam
Namibia Na. AF/IO 14.0◦S-26.8◦S 2.0◦E-16.8◦E MeteoSat Cape Town
Agulhas Current A.G. AF/IO 25.2◦S-38.0◦S 8.0◦E-20.8◦E MeteoSat Durban

Gulf of Alaska G.A. NA/PO 42.2◦N-55.0◦N 120.0◦W-132.8◦W GOES16 Anchorage
California Current C.C. NA/PO 32.0◦N-44.8◦N 119.0◦W-131.8◦W GOES16 San Francisco
Baja California B.C. NA/PO 22.2◦N-35.0◦N 109.0◦W-121.8◦W GOES16, GOES17 La Paz
Gulf Stream G.S. NA/AO 42.0◦N-54.8◦N 57.0◦W-69.8◦W GOES16 New York
Gulf of Mexico G.M. NA/GO 18.0◦N-30.8◦N 87.2◦W-100.0◦W GOES16 New Orleans
North Brazil Current N.B. SA/AO 18.0◦S-30.8◦S 37.0◦W-49.8◦W GOES16 Belém

(a) False-color image (b) Super-pixel processed (c) Super-pixel label (d) Final label

Marine fog under clear-sky conditions Marine fog obscured by high clouds

Figure 1. The key images from the marine fog annotation pro-
cess using SLIC algorithm, taking an example from Himawari-8/9
satellite data captured at 00:00 UTC on June 13, 2021.

marine fog and to determine the evolution of the entire ma-
rine fog process. Our identification primarily relies on the
following aspects:
• Expert annotations and experience: We collaborated

with meteorological experts from meteorological centers
to identify and annotate typical marine fog events based
on their expertise and experience.

• Meteorological reports and reviews: Resources, such
as published Spring 2024 Marine Weather Review [10] as
shown in Table 2, provide detailed information about ma-
rine fog events, including their occurrence, regions, and
types, serving as valuable references for identification.

• Meteorological observations from ships and coastal
stations: Data sources such as International comprehen-
sive ocean-atmosphere data set (ICOADS) [7] provide
key meteorological parameters, including present weather
phenomena, visibility, and relative humidity, which can
be analyzed using marine fog detection criteria to further
refine the data.
We utilized the annotation tool from the research [2] for

marine fog monitoring based on natural-color images, as ex-
emplified in Fig. 1 (a). This tool employs the Simple Linear
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Figure 2. Visualization examples of GOES16 satellite data across three regions including true-color images and corresponding fog masks,
where each row represents a distinct marine fog event. (a), (b), and (c) represent Baja California (B.C.), California Current (C.C.), and
Gulf of Alaska (G.A.) region, respectively.

Table 2. Records of marine fog events from Spring 2024 Marine
Weather Review [10] with detailed information, including time,
intensity, minimum visibility, and regions.

Month Day Intensity Visibility Marine fog distribution locations

1 March 22-24 Heavy Fog ≤ 1km Bohai Sea, Most of Yellow Sea, Western China East Sea
2 March 27-28 Heavy Fog ≤ 1km Central and southern Yellow Sea, North Yellow Sea
3 April 26-27 Heavy Fog ≤ 1km Most of Yellow Sea, Western China East Sea

Iterative Clustering (SLIC) algorithm [1] to achieve pixel-
level annotations. Taking Himawari-8/9 data as an example,
we use Band 03 (0.64µm), Band 04 (0.86µm), and Band 14
(11.20µm) to combine the natural-color image since it is
feasible to highlight the features and textures of marine fog,
relying on the high reflectance and low brightness temper-
ature values of the marine fog. First, pseudo-color images
are segmented into N super-pixels (set to N = 500 dur-
ing our annotation process), as illustrated in Fig. 1 (b). For
each super-pixel, three annotation options are provided: fog
under clear-sky conditions, fog obscured by high clouds,
and non-fog regions. These are represented in Fig. 1 (c) by
green, blue, and black blocks, respectively. Since gaps may
exist between super-pixels during segmentation, we further
applied dilation and erosion operations to generate a com-
plete and connected final binary mask for marine fog as
shown in Fig. 1 (d).

4. MFogHub Samples

The MFogHub dataset supports multi-dimensional data re-
trieval, extraction, and the creation of sub-datasets tailored
to specific experimental purposes. Based on the experimen-
tal design described in the main text, this section presents
visualization examples of different regions under the same
satellite data and of the same region under different satellite
data, as illustrated in Fig. 2 - Fig. 4.

From the aspect of multi-regional, Fig. 2 provides data
samples from the GOES satellite for three regions: Baja
California (B.C.), California Current (C.C.), and Gulf of
Alaska (G.A.). It is evident that marine fog varies signif-
icantly in terms of spatial distribution and shape across dif-
ferent regions. These differences are largely influenced by
factors such as ocean currents and sea surface temperature
variations. Additionally, during daytime fog events, imag-
ing near dawn or dusk may be slightly affected, as seen in
the first column of Fig. 2. Besides, Fig. 3 presents sequen-
tial data from the FY4A satellite for different regions, fo-
cusing on the marine fog forecasting task. The regions in-
clude the Yellow and Bohai Seas (a), the East China Sea
(b), and the South China Sea (c). It can be observed that the
distribution of marine fog and clouds varies significantly
across regions due to differences in land-ocean configura-
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Figure 3. Visualization examples of FY4A satellite sub-dataset for the marine fog forecasting task. (a), (b), and (c) represent multiple
time series samples from the Yellow and Bohai Seas, the East China Sea, and the South China Sea, respectively, with a 30-minute interval
between consecutive images.

tions and cloud patterns. Over the progression of consecu-
tive images, differences in the movement speeds of various
cloud types and fog can also be seen. Notably, marine fog
exhibits slower changes compared to other cloud types.

From the aspect of multi-satellite, Fig. 4 shows a com-
parative visualization of data collected over the Yellow and
Bohai Seas from the FengYun-4A (FY4A) and Himawari-
8/9 (H8/9) satellites, along with corresponding manually
annotated labels, during the time period from 00:00 to
04:30 UTC on March 25, 2021. The FY4A composite im-
age is constructed using the Band 01 (0.47µm), Band 02
(0.65µm), and Band 03 (0.825µm), while the H8 composite
image is also derived from the Band 01 (0.47µm), Band 02
(0.51µm), and Band 03 (0.64µm). Notably, while the com-
posite images generated from different spectral bands ex-
hibit some differences, the texture patterns and the numeri-
cal distribution of values within the fog regions remain rel-
atively consistent across the datasets. These visualizations

underscore the diversity and comparability of data across
regions and satellite sources, highlighting the dataset’s ver-
satility for research purposes.

5. Evaluation Metrics

We evaluate the performance of different baseline models
on marine fog detection and forecasting tasks using multiple
metrics in a thorough and rigorous manner.

For the marine fog detection task, as shown in the Fig. 5,
a confusion matrix composed of True-Positive (TP), False-
Positive (FP), False-Negative (FN) and True-Negative (TN)
is derived based on the statistical results of all test samples
for the marine fog category. Using this matrix, we compute
several evaluation metrics, including The Critical Success
Index (CSI), Recall, Precision, Accuracy and the mean In-
tersection over Union (mIoU) with the detailed calculation
formulas provided in the Fig. 5.
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Figure 4. Visualization examples of FY4A and H8/9 satellite data with corresponding marine fog labels over the Yellow and Bohai Seas
from 00:00 to 04:30 UTC on March 25, 2021.
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Figure 5. Confusion matrix and evaluation metrics on marine fog
detection task in MFogHub on the statistical results of all test pix-
els.

For the marine fog forecasting task, we employ the fol-
lowing four evaluation metrics:

Error metrics: To measure the differences between the
predicted results and the ground truth, we use the Mean
Squared Error (MSE) and the Mean Absolute Error (MAE),
that which can be formulated as:

MSE =
1

T

T∑
t=1

C∑
c=1

H∑
h=1

W∑
w=1

(yt,c,h,w − ŷt,c,h,w)
2 (1)

MAE =
1

T

T∑
t=1

C∑
c=1

H∑
h=1

W∑
w=1

|yt,c,h,w − ŷt,c,h,w| (2)

In Equations (1) and (2), T,C,H and W represent times-
tamp, spectral band, height, and width of a sample, re-
spectively; y represents the prediction, and ŷ represents the
ground truth.

Similarity metrics: To assess the similarity between the
predicted results and the ground truth, we utilize the Struc-
tural Similarity Index Measure (SSIM) (Equation 3) and the
Peak Signal-to-Noise Ratio (PSNR), that which can be for-
mulated as:

SSIM =
(2µyµŷ + C1)(2σyŷ + C2)

(µ2
y + µ2

ŷ + C1)(σ2
y + σ2

ŷ + C2)
(3)

PSNR = 10 · log10
(

MAX2

MSE

)
(4)

In Equation (3), µy and µŷ are the mean values of y and
ŷ, σ2

y and σ2
ŷ are the variances of y and ŷ, σyŷ is the co-

variance of y and ŷ. C1 and C2 are small constants used to
stabilize the division. In Equation (4), MAX is the maxi-
mum pixel value of the prediction y, and MSE is the Mean
Squared Error between y and ŷ.

6. More Experimental Results

6.1. Qualitative results for satellite generalization
We provide qualitative results for the assessment of satellite
generalization experiment to further validate the dataset’s
capability in multi-satellite evaluation and highlight the dif-
ferences between various satellites. From Fig. 6 (a), it can
be observed that, across different methods tested on FY4A
and H8/9 datasets, H8/9 data exhibits stronger fog detection
performance. However, the ability of the methods to detect
smaller fog regions still requires improvement. In Fig. 6 (b),
it is evident that Dlink-ViT [12] demonstrates stability in its
performance across consecutive timestamps of marine fog
events, with consistently accurate and continuous predic-
tions. These visualized differences further underscore the
dataset’s robustness for validation purposes and its sensitiv-
ity to variations in data from different satellites, providing
valuable insights for model development and evaluation.
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Figure 6. Qualitative visualizations of the marine fog detection task using the FY4A and H8/9 sub-datasets from MFogHub on May 31,
2021, over the Yellow and Bohai Seas. The white, blue, and red regions represent True Positives (TP), False Negatives (FN, omissions),
and False Positives (FP, false alarms), respectively. (a) Comparisons of eight baseline models. (b) An illustrative example of continuous
marine fog monitoring using Dlink-ViT. [12].

6.2. Qualitative results for regional generalization

We provide qualitative results as shwon in Fig. 7 for the
assessment of regional generalization experiment to further
validate the dataset’s capability using eight baseline meth-
ods, taking the North Sea (N.S.), Mediterranean (Central)
(W.C.), and Agulhas Current (A.G.) sub-dataset from Me-

teoSat data as an example. It highlights the differences
in predictive performance across models, both spatially
(across regions) and temporally (over time steps). It under-
scores the importance of qualitative analysis as a comple-
ment to quantitative metrics, particularly for capturing sub-
tle variations in model performance. Furthermore, the mod-
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Figure 7. Qualitative visualizations of the marine fog forecasting results across different baseline methods on the North Sea (N.S.),
Mediterranean (Central) (W.C.), and Agulhas Current (A.G.) sub-datasets, showing predictions at various timestamps. The first row
represents the input, the second row shows the ground truth, and the remaining rows display the predictions from different baselines.

els successfully predict the approximate locations of land,
sea, and clouds. However, they still face challenges in re-
covering fine details, often producing blurred predictions.
The inherent ambiguity between clouds and fog further ex-
acerbates this issue. Since the distinction between clouds
and fog in images primarily relies on texture features, ad-
dressing the blurriness in forecasting tasks remains a critical
area for further research and practical applications.

6.3. Numerical results for multi-region marine fog
forecasting

For the multi-region study on marine fog forecasting, we ex-
panded and combined six independent regional sub-datasets
(D.W., D.C., D.E., N.S., Na., and A.G.) into three additional
multi-region datasets: Europe (EU), Africa (AF), and an all-
mixed-region (All) sub-dataset. This resulted in a total of
nine training-testing datasets. In the main text, we provide



Table 3. Numerical results of multi-regional marine fog forecast-
ing using MeteoSat data: The vertical axis represents training data,
the horizontal axis represents testing data, and the evaluation met-
ric is MSE.

D.W D.C. D.E. N.S Na. A.G. EU AF All

D.W 3297.54 3282.32 2898.87 3403.72 4473.63 4799.60 3035.57 4525.23 3532.13
D.C. 3625.57 2871.94 2903.75 3678.48 4611.16 4994.77 3106.74 4570.14 3594.55
D.E. 3607.14 3122.68 2694.88 3385.61 4410.14 4843.56 3071.27 4375.08 3505.88
N.S 3720.67 3611.19 3204.69 3086.77 4994.32 5404.97 3129.58 4553.46 3604.21
Na. 6824.00 4528.50 4808.71 6066.23 2829.41 3987.79 4358.33 4171.52 4296.06
A.G. 4877.08 3700.96 3607.50 4305.96 3297.16 3686.85 3558.05 3669.39 3595.16

EU 3080.94 2602.41 2389.33 2789.63 3846.61 4274.99 2613.30 3814.77 3013.79
AF 4627.41 3620.35 3453.36 3985.83 2674.96 3461.31 3412.20 3113.20 3312.53

All 3028.84 2550.35 2350.13 2675.21 2558.98 3258.83 2525.48 2865.53 2638.83

Table 4. Numerical results of multi-regional marine fog forecast-
ing using MeteoSat data: The vertical axis represents training data,
the horizontal axis represents testing data, and the evaluation met-
ric is MAE.

D.W D.C. D.E. N.S Na. A.G. EU AF All

D.W. 17992.21 16243.24 15860.19 17327.24 20022.21 20702.67 16787.16 20826.78 18133.71
D.C. 19356.65 14437.33 15639.84 18367.65 19916.18 20670.39 16967.04 20520.45 18151.52
D.E. 19074.67 15418.43 14798.46 17333.34 19426.61 20502.34 16867.83 20063.65 17933.11
N.S. 19515.29 17767.97 17273.84 16541.97 21545.55 22315.07 17293.62 20895.08 18494.11
Na. 27287.62 19259.11 20778.01 24545.69 15084.32 18061.48 20641.25 19513.41 20265.30
A.G. 22878.98 17691.03 18214.64 20641.46 16715.02 17400.91 18608.72 18224.77 18480.75

EU 17043.17 13306.97 13555.79 15188.19 17890.82 18919.63 15158.63 18647.41 16321.57
AF 22166.88 17197.89 17607.70 19594.77 14542.30 16566.12 18138.63 16182.90 17486.72

All 16876.63 13105.42 13361.39 14879.96 13980.45 15801.32 14558.09 15170.83 14762.34

Table 5. Numerical results of multi-regional marine fog forecast-
ing using MeteoSat data: The vertical axis represents training data,
the horizontal axis represents testing data, and the evaluation met-
ric is SSIM.

D.W D.C. D.E. N.S Na. A.G. EU AF All

D.W. 0.5533 0.6225 0.6281 0.6211 0.5227 0.4980 0.5988 0.4992 0.5656
D.C. 0.5360 0.6656 0.6357 0.6057 0.5381 0.5185 0.6031 0.5195 0.5753
D.E. 0.5404 0.6459 0.6497 0.6181 0.5497 0.5265 0.6067 0.5280 0.5805
N.S. 0.5267 0.6115 0.6129 0.6279 0.5150 0.4942 0.5912 0.5067 0.5631
Na. 0.4687 0.5820 0.5818 0.5463 0.6273 0.5597 0.5375 0.5279 0.5343
A.G. 0.4949 0.5996 0.5992 0.5745 0.5902 0.5707 0.5746 0.5561 0.5685

EU 0.5811 0.6948 0.6785 0.6592 0.5876 0.5647 0.6325 0.5498 0.6050
AF 0.5094 0.6183 0.6180 0.5889 0.6474 0.6014 0.5875 0.5945 0.5899

All 0.5866 0.7013 0.6848 0.6658 0.6659 0.6260 0.6527 0.6243 0.6432

heatmap visualizations to intuitively illustrate the evalua-
tion results. Here, we supplement these visualizations with
the detailed numerical results of the TAU method [9], mea-
sured using MSE, MAE, SSIM, and PSNR, as shown in Ta-
ble 3-Table 6.

6.4. Quantitative results of different positive and
negative sample ratios in other regions

Building on the main text, we provide a comparison of
model performance under varying positive-to-negative sam-
ple ratios (1:1, 2:1, 1:0) on the B.C. and G.A. sub-datasets,
evaluated using multiple metrics including Recall, Preci-
sion, mAcc, and mIoU, as shown in Table 7 and Table 8,
respectively. The results demonstrate that different positive-
to-negative ratios lead to variations in performance and gen-
eralization across baseline methods. This finding under-
scores that the proposed MFogHub dataset not only sup-

Table 6. Numerical results of multi-regional marine fog forecast-
ing using MeteoSat data: The vertical axis represents training data,
the horizontal axis represents testing data, and the evaluation met-
ric is PSNR.

D.W D.C. D.E. N.S Na. A.G. EU AF All

D.W. 18.15 18.82 18.91 18.10 16.97 16.73 18.65 16.84 18.05
D.C. 17.74 19.66 18.90 17.73 16.89 16.62 18.59 16.89 18.03
D.E. 17.78 19.15 19.27 18.12 17.04 16.70 18.64 17.02 18.10
N.S. 17.63 18.11 18.40 18.50 16.46 16.12 18.45 16.77 17.89
Na. 15.17 17.44 16.91 15.73 18.94 17.54 17.04 17.21 17.10
A.G. 16.52 18.20 17.94 17.00 18.26 17.85 17.91 17.72 17.85

EU 18.52 20.20 19.83 19.03 17.70 17.32 19.40 17.63 18.81
AF 16.77 18.40 18.16 17.41 19.18 18.18 18.16 18.51 18.28

All 18.60 20.31 19.91 19.23 19.39 18.47 19.63 18.93 19.40

ports multi-region and multi-satellite studies but also en-
ables deeper research into the construction of marine fog
datasets. These insights can guide the development of fu-
ture datasets and advance understanding of the fundamental
patterns underlying marine fog monitoring and forecasting
tasks.
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