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1. Additional R-D curves
In Figs. 1 to 3, we present R-D curves for the three archi-
tectures: Cheng2020 architecture [1], Cheng2020 Checker-
board architecture [2] and MBT2018 mean architecture [3],
evaluated on the Tecnick dataset . We also present R-D
curves for the Cheng2020 checkerboard [2] and MBT2018
mean [3] architectures evaluated on the Kodak and CLIC
datasets in Fig. 4 and Fig. 5, which were omitted from the
main text due to the page limitation.

These presented R-D curves, like those in the main text,
demonstrate that our LVQ-based variable rate compression
methods perform comparably to non-variable rate compres-
sion models, which require separate training for each R-D
trade-off. Furthermore, the proposed LVQ-based variable
rate compression models consistently outperform their SQ-
based counterparts, especially at low bitrates.
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Figure 1. R-D curves for the Cheng2020 architecture [1] tested on
the Tecnick dataset. Here, ’m’ denotes that this model can handle
multiple R-D trade-offs, while ’s’ indicates that this model trains
separate models for each R-D trade-off.

2. Visual Comparison
Figure 6 to Fig. 11 present visual comparisons for the
Cheng2020 architecture, clearly demonstrating the superi-
ority of our proposed LVQ-based variable rate compression
model over its SQ-based counterpart. At similar bitrates,
the LVQ-based model achieves significantly higher PSNR
values and effectively suppresses compression artifacts.
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Figure 2. R-D curves for the Cheng2020 Checkerboard architec-
ture [2] tested on the Tecnick dataset. Here, ’m’ denotes that this
model can handle multiple R-D trade-offs, while ’s’ indicates that
this model trains separate models for each R-D trade-off.
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Figure 3. R-D curves for the MBT2018 mean architecture [3]
tested on the Tecnick dataset. Here, ’m’ denotes that this model
can handle multiple R-D trade-offs, while ’s’ indicates that this
model trains separate models for each R-D trade-off.
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(a) Kodak
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(b) CLIC validation set

Figure 4. R-D curves of for the Cheng2020 Checkerboard architecture [2] evaluated on the Kodak and CLIC datasets. Here, ’m’ denotes
that this model can handle multiple R-D trade-offs, while ’s’ indicates that this model trains separate models for each R-D trade-off.
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(a) Kodak
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(b) CLIC validation set

Figure 5. R-D curves of for the MBT2018 mean architecture [3] evaluated on the Kodak and CLIC datasets. Here, ’m’ denotes that this
model can handle multiple R-D trade-offs, while ’s’ indicates that this model trains separate models for each R-D trade-off.
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SQ-based variable rate compression model 
                        0.096 bpp
                       29.710 dB

LVQ-based variable rate compression model 
                        0.103bpp
                       30.484 dB

Ground Truth

Figure 6. Visual comparisons of different variable rate compression models on ’kodim04.png’ from Kodak dataset.

SQ-based variable rate compression model 
                        0.101 bpp
                       30.352 dB

LVQ-based variable rate compression model 
                        0.105 bpp
                       31.356 dB
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Figure 7. Visual comparisons of different variable rate compression models on ’kodim10.png’ from Kodak dataset.



(a) SQ-based variable rate compression model, 0.075 bpp, 30.926 dB 

(b) LVQ-based variable rate compression model, 0.078 bpp, 32.169 dB 

(c) Ground Truth 

Figure 8. Visual comparisons of different variable rate compression models on ’kodim03.png’ from Kodak dataset.



(a) SQ-based variable rate compression model, 0.181 bpp, 27.822 dB 

(b) LVQ-based variable rate compression model, 0.190 bpp, 28.141 dB 

(c) Ground Truth 

Figure 9. Visual comparisons of different variable rate compression models on ’kodim06.png’ from Kodak dataset.



(a) SQ-based variable rate compression model, 0.073 bpp, 30.517 dB 

(b) LVQ-based variable rate compression model, 0.080 bpp, 31.562 dB 

(c) Ground Truth 

Figure 10. Visual comparisons of different variable rate compression models on ’kodim12.png’ from Kodak dataset.



(a) SQ-based variable rate compression model, 0.105 bpp, 28.831 dB 

(b) LVQ-based variable rate compression model, 0.095 bpp, 31.421 dB 

(c) Ground Truth 

Figure 11. Visual comparisons of different variable rate compression models on ’kodim20.png’ from Kodak dataset.
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