NN-Former: Rethinking Graph Structure in Neural Architecture Representation

Supplementary Material

1. Methods Details
1.1. Implementation for ASMA

We present Python-style code for calculating the attention
matrix in the ASMA module in Listing 1. ASMA is moti-
vated by the importance of sibling nodes. In the accuracy
prediction, sibling nodes provide complementary features,
such as parallel 1x1 and 3x3 convolutions extracting pixel
features and local aggregations, respectively. Although the
two nodes are neither connected nor reachable through tran-
sitive closure, their information can influence each other.
This conclusion has been studied in works such as Incep-
tion [40] and RepVGG [6]. In latency prediction, sibling
nodes can run in parallel. For example, if two parallel 1x1
convolutions are merged into one, it takes only one CUDA
kernel and fully utilizes parallel computing. Hence it is rea-
sonable for ASMA to fuse the sibling nodes information
directly.

Listing 1. Calculating the attention matrix in ASMA.

def attention_matrix(Q, K, A):

Q: query, K: key, A: adjacency matrix

Calculate the attention scores

attn = torch.matmul (Q, K.mT) /
math.sqrt (Q.size(-1))

Prepare attention masks

pe = torch.stack([A, A.mT, A.mT @ A, A
@ A.mT], dim=1)

pe = pe + torch.eye(L, dtype=A.dtype,
device=A.device)

Apply masking

attn = attn.masked_fill (pe == 0,
—torch.inf)

Softmax operation

attn = F.softmax (attn, dim=-1)

return attn

To implement the masking operation, the values at the non-
zero positions remain unchanged, while the other values are
set to minus infinity. Consequently, the softmax operation
on these masked values results in zeroes.

1.2. Proof of sibling nodes identification

In the paper, we use A’ A to represent sibling nodes that
share the same successor. Here we provide trivial proof.
A;; = 1 denotes there is a directed edge linked from node
7 to node k. Thus A@ = 1 denotes that there is a directed
edge linked from node ¢ to node k. Thus (ATA)k} =
3
S, AL A, > Al A;; = 1, which denotes that node

k and node j share a same successor . Similar to AAT,

where (AAT>

predecossor.

> 1 if node k and node j share a same
kj

1.3. Proof of Bi-directional Graph Isomorphism
Feed-Forward Network

We begin by summarizing the BIGFFN as the common
form of message-passing GNNs, and then prove the iso-
morphism property. Modern message-passing GNNs fol-
low a neighborhood aggregation strategy, where we itera-
tively update the representation of a node by aggregating
representations of its neighbors. To make comparison with
modern GNNs, we follow the same notations, where the
feature of node v is denoted as h,.. The [-th layer of a GNN
is composed of aggregation and combination operation:

al) = AGGREGATE (h{) :u e N(v)) . (14)

B = COMBINE (h{~Y,a?), as)

where hq(f) is the feature vector of node v at the [-th it-
eration/layer. In our cases, the graph is directional, thus
the neighborhood A (v) is also divided into forward prop-
agation nodes At (v) and backward propagation nodes

N~ (v):

o) = AGGREGATE (th‘U cu € NT(v)UNT (v)) .

(16)
The AGGREGATE function in BGIFFN is defined as a
matrix multiplication followed by concatenation:

AGGREGATE : H - Concat (AHW*, ATHW ™) |

a7
where W and W™ are the linear transform for forward
and backward propagation, respectively. This is equivalent
to a bidirectional neighborhood aggregation followed by a
concatenation operation:

d>orThwr Y alThwe
uweN+ (v) weN ~ (v)

a{l) = Concat

(18)
and the COMBINE function is defined as follows:

h{) = ReLU (hS]*”Wl - aff)) Wy (19

We quote Theorem 3 in [48]. For simple reference, we
provide the theorem in the following:

Theorem 1 (Theorem 3 in [48]). With a sufficient number
of GNN layers, a GNN M : G — R maps any graphs
G1 and G4 that the Weisfeiler-Lehman test of isomorphism
decides as non-isomorphic, to different embeddings if the
following conditions hold:

a) T aggregates and updates node features iteratively
with

h = ¢ (hS}*U, ¥ ({hg,H) ue N(v)})) .0

where the function f, which operates on multisets, and
are injective.
b) T ’s graph-level readout, which operates on the multi-

set of node features {h,(f) }, is injective.

Please refer to [48] for the proof. In our cases, the dif-
ference lies in condition a), where our tasks use directed
acyclic graphs. Thus we modify condition a) as follows:

Theorem 2 (Modified condition for undirected graph). a)
T aggregates and updates node features iteratively with

D = (B0, 1 ({1 sue N @) UNT(0)}))),

(2D
where the function f, which operate on multisets, and ¢ are
injective.

The proof is trivial, as it turns back to the original
undirected graph. Following the Corollary 6 in [48], we
can build our bidirectional graph isomorphism feed-forward
network:

Corollary 1 (Corollary 6 in [48]). Assume X is count-
able. There exists a function f : X — R"™ so that
for infinitely many choices of e, including all irrational
numbers, h(c,X) = (1 +¢€) - f(c) + > ,cx f(x) is
unique for each pair (¢, X), where ¢ € X and X C
X is a multiset of bounded size. Moreover, any func-
tion g over such pairs can be decomposed as g (c,X) =

o ((1+e) - f(c)+ X ,ex f(x)) for some function .

In our cases, € is substituted by a linear transform with
weights W. f is the aggregation function, and ¢ is the
combine function. There exist choices of f and ¢ that are
injective, thus the conditions are satisfied.

Furthermore, our BGIFFN distinguishes the forward and
backward propagation, yielding stronger capability in mod-
eling graph topology. Our method corresponds to a stronger
“directed WL test”, which applies a predetermined injective

function z to update the WL node labels k:,l(,l):

ED =2 (k,(f), {kgl) Tu € J\/+(v)} , {kgl) Tu € ./\/_(v)}))
(22)
and the condition is modified as:

Theorem 3 (Modified condition for directed graph). a) T
aggregates and updates node features iteratively with

B =6 (WD f ({B ue N) |

g ({hg,lil) tu € Nf(v)})> ,

where the function [and g, which operate on multisets, and
@ are injective.

(23)

Proof. The proof is a trivial extension to Theorem 1. Let T
be a GNN where the condition holds. Let G; and G5 be any
graphs that the directed WL-test (which means propagating
on the directed graph) decides as non-isomorphic at itera-
tion L. Because the graph-level readout function is injec-
tive, it suffices to show that 7’s neighborhood aggregation
process embeds (G; and (G5 into different multisets of node
features with sufficient iterations. We will show that for any
iteration [, there always exists an injective function ¢ such

that A" = (kff’) . This holds for I = 0 because the initial

node features are the same for WL and GNN kl(,o) = hE,O).
So ¢ could be the identity function for k = 0. Suppose this
holds for iteration &£ — 1, we show that it also holds for (.

Substituting 78" with ¢ (h£,l*1>) gives us:

h) =¢ (@ (hff’”) f ({s@ (th)) Pu € N*(v)}) ,

o ({o(h0) uen=)})).
(24)
Since the composition of injective functions is injective,

there exists some injective function v so that
h{D =4 (hgl_l), {hgl_l) fu € N+(v)})

Do wen-w)).

Then we have
D =qpozlz (kf,l), {kgl) fu € N+(U)} :

{k;fﬁ ueNT (u)}) : 20

and thus ¢ = 1 o z~! is injective because the composi-

tion of injective functions is injective. Hence for any it-
eration [, there always exists an injective function ¢ such
that th) =0 (hg_l)). At the L-th iteration, the WL test

decides that G; and G5 are non-isomorphic, that is the mul-
tisets kL are different for G; and G5. The graph neural net-
work 7’s node embeddings {hE)L)} = {(p (k;l(,L)>} must
also be different for G; and G5 because of the injectivity of
Pp. O

1.4. Implementation for BGIFFN

We present Python-style code for the BGIFFN module in
Listing 2. BGIFFN is intended to extend Graph Isomorpsim
to the bidirectional modeling of DAGs. It extracts the topo-
logical features simply and effectively, assisting the Trans-
former backbone in learning the DAG structure. Various
works use convolution to enhance FFN in vision [16] and
language tasks [46]. It is reasonable for BGIFFN to assist
Transformer in neural predictors.

Listing 2. Calculation for BGIFFN.

def bgiffn(x, A, W_1, W_forward,

W_backward, W_2):

x: node features, A: adjacency matrix

W_1, W_forward, W_backward, W_2: the
weight for linear transform

aggregate = torch.cat ((A @ x @
W_forward, A.mT @ x @ W_backward),
dim=-1)

combine = F.relu(x @ W_1 + aggregate) @
W_2

return combine

2. Experiment Details

We present implementation details of our proposed NN-
Former. For accuracy prediction, we show the experiment
settings on NAS-Bench-101 in Section 2.1.1 and NAS-
Bench-201 in Section 4.1. For latency prediction, we show
the experiment settings on NNLQ [27] in Section 2.2.1.

2.1. Accuracy Prediction

For the network input, each operation type is represented
by a 32-dimensional vector using one-hot encoding. Subse-
quently, this encoding is converted into a 160-channel fea-
ture by a linear transform and a layer normalization. The
model contains 12 transformer blocks commonly employed
in vision transformers [10]. Each block comprises ASMA
and BGIFFN modules. The BGIFFN has an expansion ra-
tio of 4, mirroring that of a vision transformer. The out-
put class token is transformed into the final prediction value
through a linear layer. Initialization of the model follows a
truncated normal distribution with a standard deviation of
0.02. During training, Mean Squared Error (MSE) loss is
utilized, alongside other augmentation losses as outlined in
NAR-Former [52] with A; = 0.2 and A2 = 1.0. The model
is trained for 3000 epochs in total. A warm-up [15] learning
rate from le-6 to le-4 is applied for the initial 300 epochs,
and cosine annealing [28] is adopted for the remaining dura-
tion. AdamW [29] with a coefficient (0.9, 0.999) is utilized
as the optimizer. The weight decay is set to 0.01 for all the
layers except that the layer normalizations and biases use
no weight decay. The dropout rate is set to 0.1. We use the

Exponential Moving Average (EMA) [37] with a decay rate
of 0.99 to alleviate overfitting. Each experiment takes about
1 hour to train on an RTX 3090 GPU.

2.1.1. Experiments on NAS-Bench-101.

NAS-Bench-101 [54] provides the performance of each ar-
chitecture on CIFAR-10 [24]. It is an operation-on-node
(OON) search space, which means nodes represent opera-
tions, while edges illustrate the connections between these
nodes. Following the approach of TNASP [30], we utilize
the validation accuracy from a single run as the target dur-
ing training, and the mean test accuracy over three runs is
used as ground truth to assess the Kendall’s Tau [38]. The
metrics on the test set are computed using the final epoch
model, the top-performing model, and the best Exponential
Moving Average (EMA) model on the validation set. The
highest-performing model is documented.

2.1.2. Experiments on NAS-Bench-201.

NAS-Bench-201 offers three sets of results for each ar-
chitecture, corresponding to CIFAR-10, CIFAR-100, and
ImageNet-16-120. This study focuses on the CIFAR-10
dataset, consistent with the setup in TNASP [30].

NAS-Bench-201 [8] is originally operation-on-edge
(OOE) search space, while we transformed the dataset
into the OON format. NAS-Bench-201 contains the per-
formance of each architecture on three datasets: CIFAR-
10 [24], CIFAR-100 [24], and ImageNet-16-120 (a down-
sampled subset of ImageNet [5]). We use the re-
sults on CIFAR-10 in our experiments following previous
TNASP [30], NAR-Former [52] and PINAT [31]. In the pre-
processing, we drop the useless operations taht only have
zeroized input or output. The metrics on the test set are
computed using the final epoch model, the top-performing
model, and the best Exponential Moving Average (EMA)
model on the validation set. The highest-performing model
is documented.

As for the results in the 10% setting, we argue that these
results are not a good measurement. Concretely, the predic-
tors are trained on the validation accuracy of NAS-Bench-
201 networks, and evaluated on the test accuracy. We calcu-
late Kendall’s Tau between ground truth validation accuracy
and test accuracy on this dataset which is 0.889. It indi-
cates an unneglectable gap between the predictors’ training
and testing. Thus the results around and higher than 0.889
are less valuable to reflect the performance of predictors.
For further studies, we also provide a new setting for this
dataset. Both training and evaluation are conducted on the
test accuracy of NAS-Bench-201 networks, and the training
samples are dropped during evaluation. This setting has no
gap between the training and testing distribution. As shown
in Table 13, our methods surpass both NAR-Former [52]
and NAR-Former V2 [53], showcasing the strong capabil-
ity of our NN-Former.

Table 13. Accuracy prediction results on NAS-Bench-201 [8]
when the training and testing data follow the same distribu-
tion. We use different proportions of data as the training set and
report Kendall’s Tau on the whole dataset.

v Training Samples
Method ‘ Publication ‘ 10% (1563)
NAR-Former [52] | CVPR 2023 | 0.910

NAR-Former V2 [53] NeurIPS 2023 0.921
NN-Former (Ours) 0.935

2.2. Latency prediction
2.2.1. Experiments on NNLQ.

There are two scenarios on latecny prediction on
NNLQ [27]. In the first scenario, the training set is com-
posed of the first 1800 samples from each of the ten network
types, and the remaining 200 samples for each type are used
as the testing set. The second scenario comprises ten sets of
experiments, where each set uses one type of network as the
test set and the remaining nine types serve as the training
set. The network input is encoded in a similar way as NAR-
Former V2 [53]. Each operation is represented by a 192-
dimensional vector, with 32 dimensions of one-hot oper-
ation type encoding, 80 dimensions of sinusoidal operation
attributes encoding, and 80 dimensions of sinusoidal feature
shape encoding. Subsequently, this encoding is converted
into a 512-channel feature by a linear transform and a layer
normalization. The model contains 2 transformer blocks,
the same as NAR-Former V2 [53]. Each block comprises
ASMA and BGIFFN modules. The BGIFFN has an expan-
sion ratio of 4, mirroring that of a common transformer [10].
The output features are summed up and transformed into the
final prediction value through a 2-layer feed-forward net-
work. Initialization of the model follows a truncated normal
distribution with a standard deviation of 0.02. During train-
ing, Mean Squared Error (MSE) loss is utilized. The model
is trained for 50 epochs in total. A warm-up [15] learning
rate from le-6 to le-4 is applied for the initial 5 epochs, and
a linear decay scheduler is adopted for the remaining dura-
tion. AdamW [29] with a coefficient (0.9, 0.999) is utilized
as the optimizer. The weight decay is set to 0.01 for all the
layers except that the layer normalizations and biases use no
weight decay. The dropout rate is set to 0.05. We also use
static features as NAR-Former V2 [53]. Each experiment
takes about 4 hours to train on an RTX 3090 GPU.

3. Extensive experiments

3.1. Ablation on hyperparameters

This work adopts a Transformer as the backbone, and the
hyperparameters of Transformers have been well-settled in
previous research. This article follows the common training
settings (from NAR-Former) and has achieved good results.

Apart from these hyperparameters, we provide an ablation
on the number of channels and layers in the predictor as
shown in Table 14:

Table 14. Ablation studies on hyperparameters. All experi-
ments are conducted on the NAS-Bench-101 [54] with the 0.04%
training set. (a) Ablation study on the number of channels. (b)
Ablation study on the number of transformer layers.

@ (b)
Num of Channels | KT Num of Layers | KT

64 0.748 6 0.744
128 0.758 9 0.760
160 (Ours) 0.765 12 (Ours) 0.765

3.2. Comparison with Zero-Cost predictors

Zero-cost proxies are lightweight NAS methods, but they
performs not as well as the model-based neural predictors.

Table 15. Comparison with zero-cost predictors.

NAS search space \ NAS-Bench-1011 NAS-Bench-2011

grad_norm [1] 0.20 0.58

snip [1] 0.16 0.58

NN-Former 0.71 0.80
4. Model Complexity

4.1. Theoretical Analysis

Our ASMA method has less or equal computational com-
plexity than the vanilla attention. On the dense graph, the
vanilla self-attention has a complexity of O(N?) where N
denotes the number of nodes. With the sibling connection
preprocessed, our ASMA also has a complexity of O(N?).
On sparse graphs, the vanilla self-attention is still a global
operation thus the complexity is also O(N?). Our ASMA
has a complexity of O(/N K), where K is the average degree
and K << N on sparse graphs. In practical applications,
sparse graphs are common thus our method is efficient. The
latency prediction experiments in the paper show that our
predictor can cover the DAGs from 20 200 nodes, which is
applicable for practical use.

	Introduction
	Related Works
	Methods
	Methods Details
	Implementation for ASMA
	Proof of sibling nodes identification
	Proof of Bi-directional Graph Isomorphism Feed-Forward Network
	Implementation for BGIFFN

	Experiment Details
	Accuracy Prediction
	Experiments on NAS-Bench-101.
	Experiments on NAS-Bench-201.

	Latency prediction
	Experiments on NNLQ.

