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1. The proposed ImageNet-bg
To further evaluate the robustness of out-of-distribution
(OOD) detectors against background interference, we pro-
pose a new OOD test set ImageNet-Bg, derived from the
original ImageNet validation set, containing 48,285 images.
This dataset is created by removing all the in-distribution
(ID)-related content from the samples in the ImageNet val-
idation set, by Eq.(2) from the main paper. This method en-
sures that the resulting images primarily feature background
elements rather than identifiable objects. Fig. 1 presents
several representative examples from ImageNet-Bg.

However, the images with ID regions removed using
only Eq.(2) from the main paper still present several issues:
(1) Some images appear unnatural after the ID-related ar-
eas are removed, and (2) ID-related regions are not entirely
eliminated, leading to the retention of some residual ID in-
formation. Several problematic examples from ImageNet-
Bg are illustrated in Fig. 2. To address these issues, we
apply additional filtering criteria based on Eq.(3) from the
main paper to further refine the dataset. This filtering pro-
cess creates the ImageNet-Bg(S) test set, which contains
24,863 images that primarily feature clearer background
information, thereby reducing any residual ID-related el-
ements. Consequently, ImageNet-Bg(S) includes fewer
problematic cases shown in Fig. 2 and includes more im-
ages like those illustrated in Fig. 1.

Nonetheless, since we filter images based on CLIP re-
sponses, some cases that are not problematic but prone to
shortcuts have also been excluded from ImageNet-Bg(S).
Therefore, we recommend using both ImageNet-Bg(S) and
ImageNet-Bg to thoroughly evaluate the model’s robustness
against background interference.

2. Experimental Setting
2.1. Descriptions of datasets

2.1.1 ID Dataset

We utilize ImageNet-1k [3] as ID dataset, which comprises
1,000 categories with 1,281,167 training images and 50,000
images for validation. For few-shot settings, we employ
1, 2, 4, 8, and 16 shots per class for training. For evalua-
tion, we use the ImageNet validation dataset, consisting of
50,000 images across 1,000 classes.

2.1.2 OOD Dataset

Following the setting from [5], we use the commonly used
iNaturalist [15], Places [21], SUN [16] and Texture [2]

as OOD datasets. Besides, we also use our proposed
ImageNet-Bg and ImageNet-Bg(S) as OOD datasets. Ad-
ditional details about these datasets are provided below.
iNaturalist. iNaturalist [15] is a large-scale dataset of real-
world nature images, including 859,000 images of plants
and animals across more than 5,000 species. For our evalu-
ation, we use the subset of 10,000 images from 110 classes
that do not overlap with ImageNet-1K.
SUN. SUN [16] is a large-scale scene dataset with various
scene images across 397 categories. For our evaluation, we
utilize a subset of 10,000 images from 50 classes that do not
overlap those classes in ImageNet-1K.
Places. Similar to SUN dataset, Places [21] is also a com-
prehensive scene dataset. For our evaluation, we use a sub-
set of 10,000 images from 50 categories, ensuring no over-
lap with ImageNet-1K.
Texture. The Describable Textures Dataset [2] includes
5,640 texture images across 47 distinct classes. The entire
dataset is utilized for evaluation.
ImageNet-Bg. ImageNet-Bg is a synthetic background in-
terference OOD test set containing 48,285 background im-
ages. The images in this dataset are generated by inpainting
models. This process involves removing ID-related infor-
mation from the images in the ImageNet validation set and
inpainting the ID regions with background information.
ImageNet-Bg(S). ImageNet-Bg(S) is a synthetic back-
ground interference OOD test set sampled from ImageNet-
Bg, containing 24,863 images. Compared to ImageNet-Bg,
the images in ImageNet-Bg(S) feature cleaner and more
natural backgrounds with less ID information.

2.2. Implementation Details

To obtain the mask for the ID-related areas, which will
be inpainted with background information, we utilize the
Grounded SAM model [12]. For the inpainting process, we
use the LaMa model [14]. For the learnable modules, we
incorporate 16 learnable parameters following CoOp [22]
to fine-tune CLIP for the OOD detection task. All learnable
modules are trained for 50 epochs using the SGD optimizer
with a learning rate of 2e-3. We utilize a cosine learning
rate scheduler with a constant warmup period, where the
warmup epoch is set to 1 and the initial warmup learning
rate is 1e-5. The batch size is set to 32. For the hyper-
parameters, we set the similarity threshold ϵ to 5, which
filters out 50% of the samples. λr

out to 1.5 and λg
out and

0.5 respectively. Additionally, for all experiments involving
ID augmentation, we set the number of epochs to 20. The
main experiments were implemented using PyTorch on an
NVIDIA RTX 4090 with 24 GB of memory.



Figure 1. Representative cases from ImageNet-Bg (right) and the ImageNet validation set (left).

Figure 2. Bad cases from ImageNet-Bg (right) and the ImageNet test set (left).



Method
iNaturalist SUN Places Texture Avg

AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓
One-shot

CoOp [22] 91.41 42.61 91.39 39.70 88.43 47.34 88.37 48.04 89.90 44.42
LoCoOp [10] 94.97 25.20 94.17 29.10 90.90 37.67 87.45 51.87 91.87 35.96

OSPCoOp 95.54 25.03 94.82 29.85 91.93 35.99 90.73 41.25 93.25 33.03
Two-shot

CoOp [22] 94.47 28.52 92.53 34.94 89.60 42.83 88.78 46.78 91.35 38.27
LoCoOp [10] 94.49 25.69 93.89 30.11 90.61 38.86 89.49 45.30 92.13 34.99

OSPCoOp 94.06 33.26 95.51 23.35 92.39 31.61 90.88 41.63 93.21 32.46
Four-shot

CoOp [22] 92.61 36.32 91.72 39.92 88.69 46.73 89.18 44.74 90.55 41.93
LoCoOp [10] 93.76 29.83 93.04 34.03 90.50 39.83 89.30 46.72 91.65 37.60

OSPCoOp 94.49 30.72 95.06 27.39 92.17 33.86 91.20 41.25 93.23 33.31
Eight-shot

CoOp [22] 92.90 32.85 92.11 37.55 89.14 44.76 89.58 43.91 90.94 39.77
LoCoOp [10] 94.09 27.98 92.86 36.58 89.82 43.91 89.78 45.43 91.64 38.47

OSPCoOp 94.68 28.41 95.29 24.68 92.45 31.51 91.15 39.53 93.40 31.04
Sixteen-shot

CoOp [22] 90.63 47.42 90.96 44.5 88.3 51.85 89.02 46.63 89.73 47.6
LoCoOp [10] 94.98 24.42 92.73 34.76 90.54 38.95 91.5 39.49 92.44 34.41

OSPCoOp 95.91 22.44 95.8 24.05 93.26 28.72 91.74 39.47 94.18 28.67

Table 1. Results on ImageNet-1K as ID datasets with different few-shot settings. OOD score: MCM.

Method
iNaturalist SUN Places Texture Avg

AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓
One-shot

CoOp [22] 93.23 30.44 91.93 34.28 88.99 42.39 87.42 48.12 90.39 38.81
LoCoOp [10] 96.33 17.47 95.12 23.04 91.70 32.67 86.69 51.64 92.46 31.21

OSPCoOp 96.57 18.05 95.83 21.59 92.72 30.17 90.12 41.10 93.81 27.73
Two-shot

CoOp [22] 95.89 16.04 93.01 29.13 90.06 37.91 87.83 46.08 91.70 32.29
LoCoOp [10] 95.83 19.22 94.98 20.61 91.63 33.85 89.27 45.21 92.93 29.72

OSPCoOp 95.58 23.81 95.83 21.10 92.52 30.76 90.10 43.93 93.51 29.90
Four-shot

CoOp [22] 95.50 20.84 92.56 32.89 89.44 41.31 87.91 45.61 91.35 35.16
LoCoOp [10] 95.31 20.77 94.56 24.70 91.75 33.08 88.86 45.88 92.62 31.11

OSPCoOp 95.86 21.54 96.01 20.81 92.99 29.20 90.56 41.51 93.86 28.26
Eight-shot

CoOp [22] 95.34 20.37 91.73 35.63 89.78 41.09 89.16 42.56 91.50 34.92
LoCoOp [10] 95.60 20.33 94.53 26.94 91.28 36.59 89.41 45.17 92.71 32.26

OSPCoOp 96.04 21.26 96.19 19.72 93.20 28.15 90.54 41.26 93.99 27.60
Sixteen-shot

CoOp [22] 94.10 29.23 91.92 35.74 89.3 43.81 87.25 47.54 90.64 39.08
LoCoOp [10] 96.45 17.07 94.44 25.19 91.18 32.74 91.24 38.46 93.33 28.37

OSPCoOp 97.13 15.25 96.74 18.26 94.01 25.74 91.13 41.26 94.75 25.13

Table 2. Results on ImageNet-1K as ID datasets with different few-shot settings. OOD score: GL-MCM.



λr
out λg

out

iNaturalist SUN Places Texture Avg
AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓

0.0 0.0 95.70 18.78 93.83 28.25 91.30 34.85 87.36 49.26 92.05 32.78
1.5 0.0 96.00 20.13 95.87 21.53 92.92 30.49 90.96 41.63 93.94 28.45
1.5 0.25 97.13 14.58 96.26 20.12 93.64 26.94 91.17 37.96 94.55 24.90
1.5 0.5 97.13 15.25 96.74 18.26 94.01 25.74 91.13 41.26 94.75 25.13
1.5 0.75 97.22 14.57 96.58 18.68 93.46 27.70 91.37 39.31 94.66 25.06
1.5 1.0 96.56 17.22 96.49 17.25 93.64 25.44 89.74 40.40 94.11 25.08
1.5 1.25 96.39 17.85 96.37 18.48 93.63 26.08 91.24 37.34 94.06 24.94
1.5 1.5 97.07 14.26 96.52 17.66 93.88 24.54 90.91 37.84 94.59 23.57
1.5 1.75 97.02 15.58 96.31 18.75 93.55 26.92 90.77 39.57 94.42 25.21
1.5 2.0 96.96 15.51 96.30 19.27 93.51 27.38 90.96 38.65 94.43 25.20
1.5 2.25 96.80 16.95 95.90 21.32 93.07 28.51 90.56 40.87 94.08 26.91
1.5 2.5 97.18 15.21 96.25 20.03 93.19 28.48 91.13 39.22 94.44 25.73
0.0 0.5 98.02 9.37 95.57 21.38 93.66 26.52 89.32 44.15 94.14 25.35

0.25 0.5 97.75 10.14 96.20 19.02 93.73 26.61 90.45 39.91 94.53 23.92
0.5 0.5 96.98 16.51 96.78 17.39 94.16 25.00 90.41 42.55 94.59 25.36

0.75 0.5 97.14 14.80 96.00 21.17 93.34 28.43 91.00 39.06 94.37 25.87
1.0 0.5 96.68 16.24 96.59 18.19 93.78 25.73 90.71 40.30 94.44 25.12

1.25 0.5 97.23 14.70 96.81 17.99 93.99 25.79 91.01 40.89 94.76 24.84
1.5 0.5 97.13 15.25 96.74 18.26 94.01 25.74 91.13 41.26 94.75 25.13

1.75 0.5 96.99 15.57 96.40 19.06 93.63 27.15 91.14 38.88 94.54 25.17
2.0 0.5 96.57 18.36 96.41 19.03 93.47 28.14 91.57 38.43 94.51 25.99

2.25 0.5 96.91 17.08 96.56 19.37 93.91 26.59 91.78 37.57 94.79 25.15
2.5 0.5 96.56 17.62 96.35 20.03 93.53 27.81 91.21 38.33 94.41 25.95

Table 3. Results on ImageNet with different loss weight. OOD score: GL-MCM.

OOD Aug
iNaturalist Places SUN Texture Avg.

AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓
None 95.90 20.97 94.69 28.09 92.02 34.71 89.27 46.38 92.97 32.54
Rep 95.60 20.23 95.46 22.36 92.58 32.17 90.08 44.50 93.43 29.82
Bg 97.07 14.59 96.77 17.19 93.85 25.95 90.90 41.35 94.65 24.77

Rep+Bg 97.13 15.25 96.74 18.26 94.01 25.74 91.13 41.26 94.75 25.13

Table 4. Ablation of OOD Augmentation. ’Rep’ stands for the data generated by repeating local ID regions, ’Bg’ stands using the decoupled
OOD content with ID regions inpainted. OOD score: GL-MCM.

3. Additional Results

Detailed results on fewer shots and OOD scores. Tab. 1
and 2 present detailed results on various few-shot settings
and different OOD scores. These results show that our
method consistently achieves the best performance across
all settings, regardless of the OOD scores used. Notably,
our method maintains high performance even in the 1-shot
settings, achieving AUR scores of 93.25%, 93.81% with the
MCM [9] and GL-MCM [11], OOD scores, respectively.
Results show the robustness and effectiveness of OSPCoOp
for different scenarios.

Detailed results on different loss weight. Tab. 3 presents
detailed results from ablation experiments on the loss
weights, compared to those reported in the main paper.

When both λg
out and λr

out are set to 0, our method is equiv-
alent to CoOp. Using Lr

out and Lg
out individually yields

improvements of 1.89% and 2.09% in AUR, respectively.
This demonstrates that applying pseudo-OOD supervision
can significantly enhance the OOD ablility, whether opti-
mizing from the perspective of global features or regional
features. Furthermore, when both Lg

out and Lr
out are uti-

lized, the final OOD performance improves further, regard-
less of the values of λg

out and λr
out. This indicates that inte-

grating constraints from both global and regional features
can lead to better ID/OOD decision boundaries. Results
also suggest that the final performance remains stable and
is not significantly affected by parameter variations.
Detailed results on OOD augmentation. Tab. 4 and 10
presents detailed results of the OOD augmentation. The



ID Aug
iNaturalist SUN Places Texture Avg

AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓
One-shot

None 96.57 18.05 95.83 21.59 92.72 30.17 90.12 41.10 93.81 27.73
Inpaint 96.85 16.13 96.31 18.86 93.22 28.27 89.37 43.34 93.94 26.65
Texture 96.73 16.72 96.32 19.25 93.47 27.48 89.72 43.56 94.07 26.76

Mix 96.36 18.93 96.15 20.70 93.20 29.12 89.96 42.31 93.92 27.77
Two-shot

None 95.58 23.81 95.83 21.10 92.52 30.76 90.10 43.93 93.51 29.90
Inpaint 96.64 16.87 96.36 18.50 93.24 27.81 89.65 42.96 93.98 26.53
Texture 96.41 18.62 96.40 19.02 93.45 27.75 89.66 44.18 93.98 27.39

Mix 96.31 19.20 96.33 19.24 93.20 28.18 89.80 44.22 93.91 27.71
Four-shot

None 95.86 21.54 96.01 20.81 92.99 29.20 90.56 41.51 93.86 28.26
Inpaint 96.20 19.10 96.44 18.66 93.29 28.23 90.30 41.58 94.06 26.90
Texture 95.93 19.60 96.35 18.23 93.29 27.25 89.87 42.22 93.86 26.82

Mix 96.59 17.24 96.42 19.07 93.36 27.72 90.26 41.57 94.16 26.40
Eight-shot

None 96.04 21.26 96.19 19.72 93.20 28.15 90.54 41.26 93.99 27.60
Inpaint 95.79 21.09 96.42 18.84 93.43 27.41 90.00 42.37 93.91 27.43
Texture 95.98 19.39 96.29 18.95 93.36 27.09 90.35 39.88 94.00 26.33

Mix 96.47 17.41 96.59 17.41 93.53 26.54 90.68 40.54 94.32 25.48

Table 5. Results on ImageNet-1K as ID datasets with different ID augmentation. OOD score: GL-MCM.

Methods
LSUN-C LSUN-R Places Texture iSUN Avg

AUR↑ FPR ↓ AUR↑ FPR ↓ AUR↑ FPR ↓ AUR↑ FPR ↓ AUR↑ FPR ↓ AUR↑ FPR ↓
GLMCM [11] 90.50 49.86 81.54 79.69 57.28 98.18 75.34 86.83 79.81 82.04 73.90 82.42

CoOp [22] 90.45 44.99 84.41 61.31 48.93 99.52 76.38 84.64 81.91 74.41 76.42 72.97
LoCoOp [10] 91.13 42.17 84.76 68.38 58.28 98.82 77.02 80.5 83.47 72.53 78.93 72.48

CLIP-OS [13] † 87.50 - 85.69 - 60.04 - 70.88 - 85.82 - 78.24 -
OSPCoOp 92.18 40.25 84.98 69.82 69.13 96.64 76.53 80.32 85.34 70.37 81.63 71.48

Table 6. 1-shots results on CIFAR-100 with ViT-B/16 and GL-MCM OOD score. Results marked with † are taken from [13]. ’AUR’
stands for AUROC and ’FPR’ stands for FPR95.

results indicate that OOD augmentation not only improves
performance on the scene OOD dataset but also leads to en-
hancements in other datasets.

Detailed results on ID augmentation We replace the back-
ground with inpainted pictures or textured pictures of higher
quality which are non-repetitive. Besides, We take many
measures to ensure that the augmented samples added to
training can improve the model’s performance. Since the
augmented images feature foregrounds and backgrounds
that are completely unrelated and unnatural, we set the max-
imum proportion of augmented samples that can be used
(e.g., 0.2). For the inpainted images, we set constraints
to ensure that the background is not replaced with images
from the same category. For images where the ID-relevant
area occupies a small percentage of the picture, classifica-
tion inevitably relies on ID-irrelevant background informa-

tion. Therefore, we use a threshold (e.g., 0.5) for the ratio of
the image covered by the mask to select the images used for
augmentation. To ensure category balance, we implement
a reintroduction strategy for categories with insufficiently
augmented samples. For overly difficult augmented sam-
ples, we filter them based on their cosine similarity to the
original samples in the visual embedding space. Those with
a similarity lower than the threshold (e.g., 0.7) are excluded
from training. Tab. 5 presents detailed ablation experiment
results of the ID augmentation compared to those reported
in the main paper. In most few-shot settings, the proposed
augmentations can bring about performance improvements.

Detailed results on different region delineation methods
Tab. 11 presents detailed results of the region delineation
methods compared to those reported in the main paper.

Results on additional ID datasets. We evaluate our ap-



ID / OOD
IN-100 / IN-10 IN-10 / IN-20 IN-10 / IN-100 IN-20 / IN-10 Avg.

AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓
LoCoOp [10] † 81.97 61.40 92.75 28.20 93.00 30.08 92.34 34.40 90.02 38.52

SCT [20] † 82.60 57.80 94.33 25.10 93.90 26.64 94.95 25.00 91.45 33.64
OSPCoOp 84.30 53.80 98.38 5.40 99.13 3.08 98.24 5.23 95.01 16.88

Table 7. Hard OOD results on ImageNet subsets with ViT-B/16 and GL-MCM OOD score. Results marked with † are taken from [20].

Methods
RESISC45 UC Merced Land Use SUN Avg.

AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓
GLMCM [11] 77.92 71.30 76.13 63.33 83.17 59.03 79.07 64.55

CoOp [22] 90.87 40.41 97.37 17.58 91.77 33.36 93.34 30.45
LoCoOp [10] 91.19 42.22 96.69 19.70 93.89 26.07 93.92 29.33

OSPCoOp 92.59 38.82 97.46 13.94 96.48 19.52 95.51 24.09

Table 8. Results on RESISC45 with ViT-B/32 and GL-MCM OOD score.

proach on additional ID datasets, including the widely
used CIFAR-100 [8] and a remote sensing dataset, NWPU-
RESISC45 [1]. RESISC45 features landscape images as
ID samples, where the distinction between foreground and
background is often less clearly defined compared to other
datasets. For CIFAR-100, we utilize LSUN [19], Places
[21], Texture [2], and iSUN [17] as OOD datasets. For
RESISC45, we designate 22 classes as ID samples and 23
classes as OOD samples. Additionally, we incorporate SUN
and 10 non-overlapping classes from the UC Merced Land
Use dataset [18] as OOD samples. Results for CIFAR-100
and RESISC45 are shown in Table 6 and Table 8. The re-
sults above demonstrate the strong generalization capability
of OSPCoOp across diverse ID datasets.
Results on Hard-OOD Detection. Following MCM [9],
we evaluate OSPCoOp in hard OOD scenarios. As shown in
Table 7, we present hard-OOD detection results on subsets
of ImageNet (IN). Additionally, the results in Table 8 for
RESISC45 and UCM Land Use also fall under the category
of hard OOD detection. In hard-OOD scenarios, the con-
tribution of pseudo-OOD supervision becomes less signifi-
cant; however, the mask-guided region regularization con-
tinues to enhance the model’s ability to focus on id regions.
These results demonstrate that OSPCoOp retains strong dis-
criminative power for hard OOD detection.
Baseline performance with equivalent augmented data.
Tab. 9 compares baselines and OSPCoOp on 1-shot scenario
with the same data augmentation, where OOD and ID rep-
resent using corresponding augmentations. With pseudo-
OOD supervision, all baselines significantly improve per-
formance. Local-optimized methods (LoCoOp and OSP-
CoOp) further enhance performance with ID data augmen-
tation. As ID-augmented images have little ID information
in their backgrounds, these methods can focus more on the
ID regions and better leverage these samples.

Computational cost. As shown in Tab. 12, we present
a comprehensive comparison of GPU memory usage and
running time between OSPCoOp and other approaches on
ImageNet benchmark. For the running time evaluation,
we compute each iteration’s training time and evaluation
time. While OSPCoOp involves additional computational
resource consumption during the masking and inpainting
stages, these requirements are substantially lower compared
to those in the training stage. Compared to LoCoOp, OS-
PCoOp requires approximately 50% additional time during
the training phase, but it brings significant performance im-
provements. During the inference phase, OSPCoOp does
not incur additional computational overhead.
Ablation study on training modules Tab. 13 shows the
results of inserting parameters at different locations in the
CLIP architecture. The experimental results indicate that
inserting parameters in the vision encoder in 16-shot set-
tings tends to cause overfitting, resulting in a decrease in
OOD detection performance.

4. Visualization
To better show the enhancement of attention to ID-relevant
regions by our method, we visualize the responses of both
ID and OOD samples separately. Fig. 3 shows the re-
sponses of our method, LoCoOp, and the pre-trained CLIP
on the ImageNet-1K validation set. Our method focuses on
more ID regions while reducing attention on background re-
gions, making it more robust to background noise. Fig. 4,
5 present the responses of our method, LoCoOp, and pre-
trained CLIP to the background regions. We visualize the
top 25 regions with the highest responses, where darker col-
ors indicate higher responses. It can be seen that our method
has a lower response to the background regions.



ID Aug
iNaturalist SUN Places Texture Avg

AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC↑ FPR95 ↓
None

CoOp [22] 93.23 30.44 91.93 34.28 88.99 42.39 87.42 48.12 90.39 38.81
LoCoOp [10] 96.33 17.47 95.12 23.04 91.70 32.67 86.69 51.64 92.46 31.21

OOD Aug
CoOp [22] 96.06 19.21 94.53 26.18 92.15 32.98 88.08 47.06 92.70 31.35

LoCoOp [10] 95.53 22.69 95.56 22.98 92.56 30.74 88.80 47.93 93.11 31.08
OSPCoOp 96.57 18.05 95.83 21.59 92.72 30.17 90.12 41.10 93.81 27.73

OOD+ID Aug
CoOp [22] 96.48 17.21 94.46 29.07 91.93 34.90 87.42 47.32 92.57 32.13

LoCoOp[10] 96.44 17.18 95.71 21.73 92.79 29.93 89.10 44.46 93.51 28.32
OSPCoOp 96.36 18.93 96.15 20.70 93.20 29.12 89.96 42.31 93.92 27.77

Table 9. 1-shot results on ImageNet-1K as ID datasets with different ID augmentation. OOD score: GL-MCM.

Filter Thre
iNaturalist Places SUN Texture Avg.

AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓
10 97.03 14.78 96.06 20.16 93.09 28.75 89.99 43.55 94.04 26.81
8 97.19 14.98 96.71 18.17 93.78 26.74 90.83 39.54 94.63 24.86
7 96.87 15.80 96.05 21.34 93.33 28.28 91.22 38.42 94.37 25.96
6 96.91 16.25 95.98 22.49 93.29 28.72 91.48 39.79 94.42 26.81
5 97.21 14.08 96.49 19.36 93.65 26.88 91.37 40.53 94.68 25.21
4 97.09 15.11 96.25 20.16 93.50 27.66 91.05 42.62 94.47 26.39
3 96.87 15.69 96.66 17.62 93.73 26.25 90.67 40.37 94.51 24.98
2 97.26 14.11 96.15 19.62 93.35 28.04 90.59 40.78 94.34 25.64

Table 10. Results with different filter threshold. OOD score: GL-MCM.

Methods
iNaturalist Places SUN Texture Avg.

AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓
Rank 97.11 15.04 96.56 19.41 93.56 28.23 90.52 42.98 94.44 26.41

Mask+Rank 97.17 15.57 96.26 19.98 93.70 28.24 90.97 39.80 94.52 25.90
Mask 97.13 15.25 96.74 18.26 94.01 25.74 91.13 41.26 94.75 25.13

Table 11. Comparison of different region delineation methods. ’RANK’ refers to method of LoCoOp , ’Mask’ denotes ours, and
’RANK+Mask’ indicates using CLIP’s modal feature similarity for those images without mask.

Methods
GPU memory usage Running time Performances

Masking Inpainting Training Training(s) Eval(s) Training iterations AUROC↑ FPR95 ↓
LoCoOp [22] - - 20.87G 0.487 0.491 500 93.52 28.66

SCT [20] - - 20.83G 0.489 0.491 500 93.37 26.47
OSPCoOp 7.52G 7.28G 20.89G 0.489 0.486 781 94.75 25.13

Table 12. Computational cost on ImageNet benchmark in the 16-shot settings with ViT-B/16. For training, we set the batch size to 32,
while for evaluation, we set the batch size to 512.
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iNaturalist Places SUN Texture Avg.

AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓
Adapter [4] 95.49 26.47 91.83 38.41 92.86 33.08 92.12 32.85 93.08 32.70

TPT [22]+Adapter [4] 96.82 16.39 94.10 29.00 93.36 28.22 92.92 30.48 94.30 26.02
VPT[6] 95.54 25.13 93.36 33.44 91.36 36.56 87.06 49.01 91.83 36.03

MaPLe[7] 95.58 20.96 95.90 19.67 93.04 28.34 90.47 39.86 93.75 27.21
TPT [22] 97.13 15.25 96.74 18.26 94.01 25.74 91.13 41.26 94.75 25.13

Table 13. Ablation study on training parameters. ’TPT’ refers to text prompt tuning, ’Adapter’ refers to the insertion of an adapter after
the Vision encoder, refining both the image features and region image features.

Image                               CLIP LoCoOp Ours Image                               CLIP LoCoOp Ours

Figure 3. Visualization of responses on ID sample. The gray rectangular box highlights regions where the visual feature responses to
ground truth rank in the top 200 across all labels.
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Figure 4. Visualization of responses on SUN, darker colors indicate higher logits for the region.

Image                               CLIP LoCoOp Ours Image                               CLIP LoCoOp Ours

Figure 5. Visualization of responses on ImageNet-Bg, darker colors indicate higher logits for the region.
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