PICD: Versatile Perceptual Image Compression with Diffusion Rendering

Supplementary Material

A. Implementation Details

A.1. Neural Network Architecture of Text-
conditioned MLIC

In Figure 1, we illustrate the neural network architecture of
text conditioned MLIC model.
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Figure 1. The neural network architecture of text-conditioned

MLIC.

A.2. Neural Network Architecture of Proposed
Adaptor

In Figure 2, we illustrate the adaptor’s neural network ar-
chitecture of vanilla ControlNet [14], StableSR [11] and our
proposed approach.
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Figure 2. The neural network architecture of the proposed adaptor.

A.3. Instance Level Guidance

To implement instance level guidance, we first need to ob-
tain E[X|X¢, y] using Tweedie’s formula following Chung

etal. [4]:

]E[XO|Xta y] = (Xt + (1 - dt)sﬁ(Xtatvy))a (1)

1
Var
where sg(., ., .) is the trained score estimator of diffusion
model.

The instance level guidance is composed of OCR guid-
ance and codec guidance. The codec guidance is straight-
forward and details can be found in Xu et al. [12]. While
the OCR guidance is not that straightforward.

We adopt Tesseract OCR engine [9] to extract text from
images, following Tang et al. [10]. However, this OCR en-
gine is not differentiable. And we can not use it in instance
level OCR guidance. To solve this problem, we alterna-
tively adopt the neural network based OCR engine named
PARSeq Bautista and Atienza [1], which is adopted in Lai
et al. [0].

Next, we use the bounding box information in Z to cut
the source image E[X| X+, y]. Then, those slice of images
are feed into PARSeq. PARSeq produces the logits, which is
further compared with the true text content in Z (weighted
by (; in Section 3.5) as guidance for diffusion model.

A 4. Hyper-parameters of Diffusion Rendering

In Table 1, we show the hyper-parameters used for diffusion
rendering.

Diffusion rendering hyper-parameter.

SCIIK T =250,¢ = 0.25,( = le — 4,w = 0.0
SIQAD T = 250,(; = 0.25,(s = le — 4,w = 0.0
Kodak T =500,¢; = 0.25,(s = 0.0,w = 3.0
CLIC T =500, (1 = 0.25,Co = 0.0,w = 3.0

Table 1. Diffusion rendering related hyper-parameters.

B. Additional Experimental Results
B.1. Additional Experimental Setup

All the experiments are conducted on a computer with 1
A100 GPU. For the domain level finetuning, we train the
LoRA augumented Stable Diffusion 2.0 model with batch-
size 64 and 10,000 steps of gradient ascent. We use a learn-
ing rate of le-4 and a LoRA with rank 256. The training
costs around 2 days. For the adaptor training, we adopt a
batchsize 64 and 5,000 steps of gradient ascent with learn-
ing rate le-4 and batchsize 64. The training cost around
1 day. Note that the domain level finetuning only happens



once. While for each bitrate, we need to train a different
adaptor.

B.2. Additional Quantitive Results

For RD performance, we also evaluate the LPIPS metric for
screen contents, which is shown in Table 2. And in Figure 3,
we present the RD curve on SIQAD and CLIC dataset.

SCI1K (Screen) SIQAD (Screen)
BD-LPIPS] BD-LPIPS,

MSE Optimized Codec

MLIC [5] (Baseline) 0.000 0.000
VTM-SCC [2] 0.055 0.021
Perceptual Optimized Codec

Text-Sketch [7] 0.135 0.087
CDC [13] 0.100 0.024
MS-ILLM [8] -0.023 -0.082
PerCo [3] 0.001 -0.070
PICD (Proposed) -0.005 -0.080

Table 2. LPIPS results on screen images. Bold and Underline:
Best and second best performance in perceptual codec.

B.3. Additional Qualitative Results

We present more qualitative results in Figure 5-6.

B.4. Additional Ablation Studies

Classifier-free Guidance Additionally, in the context of
PICD for natural image compression, we discovered the sig-
nificant importance of classifier-free guidance (CFG). Ta-
ble 3 illustrates that varying levels of CFG markedly affect
the FID and PSNR. Through empirical evaluation, we de-
termined that a CFG value of 3.0 optimizes results, yielding
the best FID, CLIP similarity, and LPIPS. This finding is
consistent with observations reported by Careil et al. [3].

B.5. MS-SSIM as Perceptual Metric

In both our setting and other papers (ILLM), MS-SSIM
aligns more with PSNR than visual quality. In our case,
for SCI1K dataset, the BD-MS-SSIM is: MLIC (0.01) >

CFG FID| PSNRt CLIPt LPIPS]
0.0 7137 2447 09247 0.1498
30 6376 2425 0.9356 0.1464
50 68.00 2374 09274 0.1555
70 7014 23.67 09213 0.1575

Table 3. Ablation study on classifier-free guidance (CFG) for nat-
ural images.

VTM (0.00) > ILLM (-0.003) > PICD (-0.006). We are
reluctant to use MS-SSIM as perceptual metric, as it is ob-
viously not aligned with visual quality. In CLIC codec com-
petition [50], the best human rated codec has almost worst
MS-SSIM. We will emphasis that MS-SSIM is not a per-
ceptual metric, and include those results.

B.6. Failure Case

Our text rendering fails if the OCR algorithm fails. Typ-
ically, an OCR failure brings distortion and mis-rendering
of text content. A visual example is shown in Fig. 4.
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Figure 3. The rate distortion (RD) curve on screen and natural images.
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Figure 4. An example of OCR failure.
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Figure 5. Qualitative results on screen images.
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Figure 6. Qualitative results on natural images.
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