
Rethinking the Adversarial Robustness of Multi-Exit Neural Networks
in an Attack-Defense Game

Supplementary Material

A. Nash Equilibrium of the Multi-exit Attack-
Defense Game

A.1. A Proof of MiniMax Theorem
We provide a brief proof of the Minimax Theorem. With
this theorem, we ensure that NEED can always find the best
strategy for the defender and make a robust defense scheme.

Lemma A.1. Let C → R|A|
be a compact, convex set of an

Euclidean space and 0 /↑ C, then ↓z ↑ R|A|
s.t.

z→x ↔ 0 ↗x ↑ C

Proof. Let the point z↑
↑ C that is nearest to the origin in

C, then ↗x ↑ C, we have ↘z↑
↘
2
2 ≃ ↘x↘22. By definition of

convexity, we have (1⇐ω)·z↑+ω·x ↑ C, where ω ↑ (0, 1),
then

↘z↑
↘
2
2 ≃ ↘(1⇐ ω) · z↑ + ω · x↘22

↘z↑
↘
2
2 ≃ (1⇐ ω)2↘z↑

↘
2
2 + ω2

↘x↘22 + 2ω(1⇐ ω)(z↑)→x

0 ≃ ω(ω⇐ 2)↘z↑
↘
2
2 + ω2

↘x↘22 + 2ω(1⇐ ω)(z↑)→x

0 ≃ (ω⇐ 2)↘z↑
↘
2
2 + ω↘x↘22 + 2(1⇐ ω)(z↑)→x

let ω ⇒ 0, then

⇐2↘z↑
↘
2
2 + 2(z↑)→x ↔ 0

(z↑)→x ↔ ↘z↑
↘
2
2

(z↑)→x ↔ 0

Then we have z↑ satisfying z in Lemma A.1.

Lemma A.2. Let M be any matrix of order |A|⇑ |A|, then

either

(1) ↓x ↑ R|A|
, x ⇓= 0 and x ⇔ 0, s.t.

x→M ⇔ 0,

(2) ↓y ↑ R|A|
, y ⇓= 0 and y ⇔ 0, s.t.

My ↖ 0

Proof. Let e1, e2, · · · , e|A| be the standard unit vectors in
R|A|, where ei = [0, · · · , 0, 1, 0, · · · , 0] with only the i-
th element being 1. Let the rows of M be denoted by
m1,m2, · · · ,m|A| ↑ R|A|.

Let C be the convex hull of
{⇐e1,⇐e2, · · · ,⇐e|A|,m1,m2, · · · ,m|A|}, then there
are two cases: 0 ↑ C or 0 /↑ C.

Case I. 0 ↑ C. ↓ω1,ω2, · · · ,ω|A|,ε1,ε2, · · · ,ε|A| ↑
R that are non-negative, s.t.






⇐ε1e1 ⇐ ε2e2 ⇐ · · ·⇐ ε|A|e|A|

+ω1m1 + ω2m2 + · · ·+ ω|A|m|A| = 0

ε1 + ε2 + · · ·+ ε|A| + ω1 + ω2 + · · ·+ ω|A| = 1

Now we show that not all ωi, i = 1, 2, · · · , |A| are 0. Sup-
pose that ↗ωi, i = 1, 2, · · · , |A|,ωi = 0, then

{
ε1e1 + ε2e2 + · · ·+ ε|A|e|A| = 0

ε1 + ε2 + · · ·+ ε|A| = 1

which are contradictory since e1, e2, · · · , e|A| are
standard unit vectors, so not all ωi, i = 1, 2, · · · , |A|

are 0. Therefore, we have none negative
ω1,ω2, · · · ,ω|A| (not all-zero) ↑ R s.t.

ω1m1 + ω2m2 + · · ·+ ω|A|m|A| = z

where z = [ε1,ε2, · · · ,ε|A|]
→

↑ R|A| and z ⇔ 0. Then
x = [ω1,ω2, · · · ,ω|A|]

→ satisfies x→M ⇔ 0, which proves
the first alternative in Lemma A.2.

Case II. 0 /↑ C. By Lemma A.1, ↓z s.t. z→x ↔ 0, ↗x ↑

C. By definition of C, ⇐ei ↑ C, then we have z→(⇐ei) ↔
0, which implies that zi ≃ 0; also mi ↑ C, then we have
z→mi ↔ 0, which implies

Mz ⇔ 0 and z ↖ 0

Let y = ⇐z, and we have

My ↖ 0 and y ⇔ 0

that proves the second alternative of Lemma A.2.

Theorem A.3 (Minimax Theorem). In the two-player

zero-sum attack-defense game G with a strategy space

S , ↓(sa↓, sd↓) ↑ S ⇑ S such that ud(sa↓, sd) ≃

ud(sa↓, sd↓) ≃ ud(sa, sd↓) for all sa, sd ↑ S , i.e.,

achieves the Nash equilibrium of the game, and in this case

ud = ud
.

Proof. By Lemma A.2, for any matrix M of order |A|⇑|A|,
we have either (1) ↓x ↑ R|A|, x ⇓= 0 and x ⇔ 0, s.t.

x→M ⇔ 0, or (2) ↓y ↑ R|A|, y ⇓= 0 and y ⇔ 0, s.t.

My ↖ 0. Take sa = x∑|A|
i=1 xi

, sd = y∑|A|
i=1 yi

, and we have



sa, sd ↑ S , then either (1) (sa)→M ⇔ 0 or (2) Msd ↖ 0.
Take a matrix

M = C⇐Md =





c c · · · c
c c · · · c
...

...
. . .

...
c c · · · c




⇐Md (12)

where c ↑ R is an arbitrary constant, then there are two
cases.
Case I. (sa)→M ⇔ 0, which implies ↗sd ↑ S ,

(sa)→Msd ↔ 0

(sa)→(C⇐Md)sd ↔ 0

(sa)→Mdsd ≃ (sa)→Csd

(sa)→Mdsd ≃ (sa)→(

|A|∑

i=1

csdi · 1)

(sa)→Mdsd ≃ c ·

|A|∑

i=1

sai

(sa)→Mdsd ≃ c

max
sd↔S

(sa)→Mdsd ≃ c

min
sa↔S

max
sd↔S

(sa)→Mdsd ≃ c

ud
≃ c

Case II. Msd ↖ 0, which implies ↗sa ↑ S ,

(sa)→Msd ≃ 0

(sa)→(C⇐Md)sd ≃ 0

(sa)→Mdsd ↔ (sa)→Csd

(sa)→Mdsd ↔ (sa)→(

|A|∑

i=1

csdi · 1)

(sa)→Mdsd ↔ c ·

|A|∑

i=1

sai

(sa)→Mdsd ↔ c

min
sa↔S

(sa)→Mdsd ↔ c

max
sd↔S

min
sa↔S

(sa)→Mdsd ↔ c

ud
↔ c

Thus, we have either ud
↔ c or ud

≃ c and c is arbitrary.
Considering that ud

↔ ud, we have ud = ud = u↓. There-
fore, the game has a value u↓ satisfying Nash equilibrium.

Take sa↓, sd↓ ↑ S s.t. min
sa↔S

(sa↓)→Mdsd = ud and

max
sd↔S

(sa↓)→Mdsd = ud, then we have

ud
≃ (sa↓)→Mdsd↓ ≃ ud (13)

therefore (sa↓)→Mdsd↓ = u↓. By definition of ud and ud

in Eqs. (8) and (9), we have ud(sa↓, sd) ≃ ud(sa↓, sd↓) ≃
ud(sa, sd↓) for all sa, sd ↑ S . This finishes the proof of
Theorem A.3.

A.2. Specific Method to Solve the Nash Equilibrium
In the implementation of NEED, we use linear program-
ming to solve the Nash equilibrium of the attack-defense
game and find the defender’s best strategy. Specifically, we
first transform the objective in Eq. (8) into

min
sd↔R|A|

⇐ ud

s.t. ⇐ M̂dsd ⇐ (⇐ud) · 1 ↖ 0

which minimizes ⇐ud.
Let x be a vector concatenating sd and [⇐ud], x =

[sd1, · · · , s
d
|A|,⇐ud] ↑ R|A|+1, and we can formulate the

linear program as follows:

min
x↔R|A|+1

c→x

s.t. Mubx ↖ bub

Meqx = beq

xi ↔ 0 for i ≃ |A|

(14)

The coefficients of the linear program are defined by:

c = [0, · · · , 0, 1]→ c → {0, 1}|A|+1

Mub =





↑M̂d
11 · · · ↑M̂d

1|A| ↑1

...
. . .

...
...

↑M̂d
|A|1 · · · ↑M̂d

|A||A| ↑1



 Mub → R|A|↑(|A|+1)

bub = [0, · · · , 0]→ bub → {0}|A|

Meq =
[

1 · · · 1 0
]

Meq → {0, 1}1↑(|A|+1)

beq = 1

In the solution of this linear program x↓ =
[sd↓1 , · · · , sd↓|A|,⇐ud↓]→, we have the best strategy of the de-
fender sd↓ = [sd↓1 , · · · , sd↓|A|]

→. Similarly, we can solve the
best strategy of the attacker sa↓ by transforming Eq. (9)
into exactly the same linear program in Eq. (14), but with
a different x = [sa1 , · · · , s

a
|A|, u

d] ↑ R|A|+1 and different
coefficients:

c = [0, · · · , 0, 1]→ c → {0, 1}|A|+1

Mub =





(M̂d)→11 · · · (M̂d)→1|A| ↑1

...
. . .

...
...

(M̂d)→|A|1 · · · (M̂d)→|A||A| ↑1



 Mub → R|A|↑(|A|+1)

bub = [0, · · · , 0]→ bub → {0}|A|

Meq =
[

1 · · · 1 0
]

Meq → {0, 1}1↑(|A|+1)

beq = 1



Table A1. The robust accuracy scores (%) on CIFAR-10 dataset obtained by different evaluation schemes on different network architectures.
The lowest scores of each column are set in bold.

Method Network Evaluation FGSM PGD-20 PGD-100 EoT-PGD-20 VMI-FGSM AutoAttack
Single attack 57.75 ± 0.00 49.64 ± 0.04 47.90 ± 0.04 47.15 ± 0.06 48.77 ± 0.04 47.64 ± 0.08

Dynamic WideResNet- Average attack 60.42 ± 0.00 52.39 ± 0.05 49.43 ± 0.08 49.76 ± 0.08 51.19 ± 0.03 52.27 ± 0.20
[3] 34-10 [46] (4 exits) Max-average attack 62.06 ± 0.00 55.94 ± 0.09 53.73 ± 0.07 54.08 ± 0.12 55.35 ± 0.12 47.32 ± 0.22

AIMER (ours) 57.73 ± 0.00 49.23 ± 0.08 46.68 ± 0.04 46.80 ± 0.10 48.40 ± 0.04 47.02 ± 0.09

Single attack 56.04 ± 0.00 51.24 ± 0.08 49.54 ± 0.05 49.90 ± 0.07 50.23 ± 0.08 63.33 ± 0.06
Dynamic L2W-DEN [12] Average attack 52.11 ± 0.00 46.65 ± 0.14 44.67 ± 0.08 44.97 ± 0.09 46.13 ± 0.06 65.04 ± 0.15

[3] (5 exits) Max-average attack 60.70 ± 0.00 54.81 ± 0.23 52.09 ± 0.10 52.85 ± 0.12 53.38 ± 0.05 63.12 ± 0.32
AIMER (ours) 51.48 ± 0.00 44.07 ± 0.20 41.86 ± 0.11 42.32 ± 0.21 43.05 ± 0.09 62.15 ± 0.20

Single attack 50.94 ± 0.00 45.94 ± 0.06 44.01 ± 0.03 44.50 ± 0.10 44.78 ± 0.03 43.98 ± 0.05
Dynamic RANet [43] Average attack 50.51 ± 0.00 45.35 ± 0.09 43.50 ± 0.09 43.84 ± 0.08 44.71 ± 0.06 53.66 ± 0.09

[3] (4 exits) Max-average attack 55.47 ± 0.00 51.31 ± 0.10 49.55 ± 0.11 49.92 ± 0.22 50.06 ± 0.06 43.75 ± 0.15
AIMER (ours) 49.86 ± 0.00 44.20 ± 0.06 42.38 ± 0.08 42.71 ± 0.13 43.53 ± 0.08 43.39 ± 0.08

Table A2. The robust accuracy scores (%) on Tiny ImageNet dataset obtained by different evaluation schemes. The lowest scores of each
column are set in bold.

Method Network Evaluation FGSM PGD-20 PGD-100 EoT-PGD-20 VMI-FGSM
Single attack 21.17 ± 0.00 19.67 ± 0.05 19.33 ± 0.04 19.30 ± 0.03 19.43 ± 0.02

Dynamic MSDNet Average attack 12.99 ± 0.00 10.63 ± 0.04 10.36 ± 0.02 10.18 ± 0.02 10.49 ± 0.01
[3] (5 exits) Max-average attack 19.49 ± 0.00 18.31 ± 0.02 17.17 ± 0.02 17.58 ± 0.06 13.27 ± 0.03

AIMER (ours) 12.71 ± 0.00 10.27 ± 0.04 10.10 ± 0.03 9.80 ± 0.05 10.21 ± 0.03

Since there are readily available tools for solving the lin-
ear program to find the Nash equilibrium, we directly utilize
the Nashpy1 python package in our method.

B. Additional Experimental Results

In addition to the experiments in the main text, in this sec-
tion, we present and analyze additional experimental re-
sults, providing more comprehensive evidence for the ef-
fectiveness of the methods proposed in this paper.

Evaluation with AIMER on more network architec-
tures and datasets. We conduct the evaluation of AIMER
and other schemes on three more multi-exit neural net-
work architectures. In Table A1, we present the results on
the multi-exit WideResNet-34-10, L2W-DEN, and RANet.
These additional results consistently verify the effective-
ness of AIMER, which evaluates relatively lower robust-
ness scores than other three schemes. In Table A2, we
evaluate MSDNet on Tiny ImageNet dataset, which has
more samples, a larger number of classes and higher resolu-
tions than CIFAR-10 and SVHN. The results show that our
method can outperform other evaluation schemes on this
dataset, exhibiting generalizability over both smaller and
larger datasets.

1
https://github.com/drvinceknight/Nashpy

Comparing AIMER with different single attacks. In
Section 4.2, we construct an ad-hoc ResNet-18 with static
inference strategy (always using the 3rd exit for inference).
Our intention for this setup is to show that a mismatch hap-
pens in such a case and the robustness is severely overes-
timated using single attack. In Table A3, we extended the
static inference experiment in Table 1 by showing all the
possible single attacks using each of the exits (e.g., ”Sin-
gle attack (exit-i)” denotes attacking the i-th exit). Note
that the ”Single attack (exit-3)” is exactly the case of A-D
match. Overall, the results are consistent with the remarks
in Section 3.2.
• When the results of ”Single attack (exit-i)” (i ⇓= 3) are

compared with ”Single attack (exit-3)” (Ea = {3} and
Ed = {3}), the single attack-exit-3 accuracy scores are
lower, which follows Remark 3.3;

• When the results of average attack (Ea = {1, 2, 3, 4} and
Ed = {3}) are compared with ”Single attack (exit-3)”
(Ea = {3} and Ed = {3}), the ”Single attack (exit-3)”
accuracy scores are lower, which follows Remark 3.2.

Also, it can be noticed that AIMER has a very similar per-
formance with the ”Single attack (exit-i)” that makes a per-
fect match in attack and defense. This shows that the strat-
egy of AIMER can always find the optimal choice in the
static setting.

NEED performance on more network architectures and
datasets. We compare the defense performance of NEED

https://github.com/drvinceknight/Nashpy


Table A3. The robust accuracy scores (%) on CIFAR-10 dataset obtained by different single attacks, average attack and AIMER. The
lowest scores of each column are set in bold.

Method Network Evaluation FGSM PGD-20 PGD-100 EoT-PGD-20 VMI-FGSM AutoAttack
Single attack (exit-1) 75.04 ± 0.00 75.43 ± 0.04 75.44 ± 0.07 75.35 ± 0.05 74.73 ± 0.04 80.15 ± 0.05
Single attack (exit-2) 66.96 ± 0.00 65.76 ± 0.05 65.41 ± 0.06 65.36 ± 0.05 65.20 ± 0.06 74.28 ± 0.03

Static ResNet-18 Single attack (exit-3) 52.83 ± 0.00 45.86 ± 0.05 43.24 ± 0.03 43.64 ± 0.08 45.10 ± 0.04 42.41 ± 0.02
(3/4) (4 exits) Single attack (exit-4) 60.29 ± 0.00 56.54 ± 0.08 54.12 ± 0.02 54.42 ± 0.06 55.30 ± 0.05 59.34 ± 0.02

Average attack 56.54 ± 0.00 52.09 ± 0.04 50.51 ± 0.04 50.72 ± 0.04 51.38 ± 0.05 56.49 ± 0.03
AIMER (ours) 52.81 ± 0.00 45.85 ± 0.05 43.21 ± 0.01 43.60 ± 0.03 45.10 ± 0.03 42.40 ± 0.04

Table A4. The Accuracy (%) of single-exit and different multi-exit
WideResNet-34-10 on CIFAR-10 evaluated with AIMER. The
best result of each column is set in bold.

Network Method Clean Acc. Robust Acc.
Single-exit 86.31 ± 0.00 43.78 ± 0.04

WideResNet- Static 86.82 ± 0.00 49.37 ± 0.06
34-10 (4 exits) Dynamic 86.85 ± 0.00 49.23 ± 0.12

NEED 87.90 ± 0.00 50.78 ± 0.11

Table A5. The Accuracy (%) of two multi-exit neural networks
on CIFAR-10 with different inference strategies evaluated with
AIMER. The best result of each column is set in bold.

Network Method Clean Acc. Robust Acc.
Static 83.20 ± 0.00 32.84 ± 0.04

L2W-DEN [12] Dynamic 81.64 ± 0.00 44.12 ± 0.08
NEED 81.80 ± 0.05 48.03 ± 0.10

Static 78.57 ± 0.00 38.03 ± 0.03
RANet [43] Dynamic 78.11 ± 0.00 44.20 ± 0.15

NEED 78.52 ± 0.02 45.92 ± 0.21

on three additional architectures in Table A4 and A5. Com-
pared with the baselines, NEED achieves a higher ro-
bustness under the strict evaluation of AIMER. Addition-
ally, Table A8 shows the defense performance of NEED
combined with different adversarial training methods us-
ing ResNet-18 backbone on SVHN dataset. In most cases,
NEED outperforms the single-exit baselines by a notice-
able margin. Especially, in AutoAttack, NEED can improve
the robust score by around 5% maximally. We suppose
that this might be attributed to the significant impact of the
maximized A-D mismatch on the decision-based algorithm
in AutoAttack, causing the unstable adversarial examples
it generates to easily become ineffective in a different en-
semble of exits for inference. Meanwhile, we also notice
that the performance of NEED lags behind single-exit net-
works when using FAT adversarial training. This is proba-
bly caused by the complexity of multi-exit neural networks
which makes it more challenging to transfer the robustness
obtained from iterative attacks during training to single-step
attacks when using certain adversarial training methods.

Table A6. Accuracy (%) under LAFIT attack on CIFAR-10. The
setup of different networks are consistent with those in Table 1 and
A1. The best result of each column is set in bold.

Evaluation ResNet-18 MSDNet ViT

Single attack 62.62 ± 0.10 56.51 ± 0.05 56.53 ± 0.03
Average attack 62.80 ± 0.07 42.91 ± 0.15 58.85 ± 0.09
Max-average attack 57.20 ± 0.05 55.40 ± 0.08 50.36 ± 0.05
AIMER (ours) 45.27 ± 0.02 42.89 ± 0.08 50.01 ± 0.08

Table A7. Comparison between the AIMER evaluation scheme
and an exit-wise EoT evaluation scheme from the dimensions of
PGD-20 robust accuracy and online computational cost per sam-
ple. Experiments are conducted on ResNet-18 network architec-
ture and CIFAR-10 dataset.

Network Method Robust Acc. (%) Cost (ms)
AIMER (ours) 45.22 ± 0.04 3.88 ⇑100

EoT (1-iter.) 50.93 ± 0.05 3.85 ⇑100

ResNet-18 EoT (2-iter.) 48.73 ± 0.04 7.73 ⇑100

(4 exits) EoT (5-iter.) 47.37 ± 0.06 1.93 ⇑101

EoT (10-iter.) 45.79 ± 0.05 3.87 ⇑101

EoT (20-iter.) 45.12 ± 0.06 7.78 ⇑101

Evaluation with AIMER using latent feature attacks.
Latent feature attacks, such as LAFIT [45], have a close
connection with multi-exit neural networks in that they also
utilize early exit results to optimize the adversarial exam-
ples. In Table A6, we attempt to further enhance such at-
tacks with AIMER. For a n-exit network, we use the (n⇐2)-
th exit to acquire latent features and replace the main-exit
results with different evaluation schemes. While the results
also shows consistent effectiveness of AIMER, LAFIT does
not necessarily perform better than other attacks like PGD-
100. We assume that this might be caused by the lack of a
flexible strategy in choosing the latent features, which might
lead to severe A-D mismatch. It remains a challenging yet
promising future direction to study how to better combine
AIMER with this category of adversarial attacks.

Visualization of the approximated payoff matrices.
Figure A1, A4 and A5 plot the heatmaps of the approxi-



Table A8. Accuracy (%) under different attacks when combining NEED with AT methods on the ResNet-18 model and SVHN dataset.
Better results are set in bold.

Method Clean FGSM PGD-20 PGD-100 EoT-PGD-20 VMI-FGSM AutoAttack
Standard 95.46 ± 0.00 21.55 ± 0.00 0.78 ± 0.01 0.18 ± 0.02 0.30 ± 0.01 0.44 ± 0.01 0.18 ± 0.01
Standard + NEED 95.80 ± 0.04 26.23 ± 0.12 0.79 ± 0.06 0.54 ± 0.06 0.42 ± 0.04 0.46 ± 0.04 1.64 ± 0.10

PGD-AT [22] 92.17 ± 0.00 72.67 ± 0.00 54.20 ± 0.05 44.64 ± 0.04 51.58 ± 0.03 47.00 ± 0.01 25.48 ± 0.03
PGD-AT + NEED 93.34 ± 0.05 75.31 ± 0.11 55.03 ± 0.17 46.50 ± 0.12 53.11 ± 0.10 54.15 ± 0.09 30.10 ± 0.21

TRADES [47] 89.52 ± 0.00 73.95 ± 0.00 54.09 ± 0.05 50.28 ± 0.03 52.14 ± 0.01 51.53 ± 0.03 47.45 ± 0.04
TRADES + NEED 93.29 ± 0.05 74.02 ± 0.10 55.44 ± 0.16 50.99 ± 0.09 52.59 ± 0.18 52.04 ± 0.22 50.12 ± 0.30

MART [38] 91.32 ± 0.00 72.71 ± 0.00 49.11 ± 0.01 40.66 ± 0.05 42.25 ± 0.06 40.08 ± 0.07 33.99 ± 0.01
MART + NEED 92.16 ± 0.16 74.34 ± 0.11 50.43 ± 0.33 42.89 ± 0.15 46.15 ± 0.12 46.11 ± 0.20 37.91 ± 0.13

FAT [48] 93.00 ± 0.00 56.87 ± 0.00 48.04 ± 0.05 46.80 ± 0.05 45.18 ± 0.02 47.05 ± 0.03 43.85 ± 0.02
FAT + NEED 90.49 ± 0.03 56.18 ± 0.08 49.01 ± 0.04 47.29 ± 0.08 46.90 ± 0.07 48.80 ± 0.09 44.76 ± 0.12

(a) SVHN (b) CIFAR-10

Figure A1. The defender’s approximated payoff matrix on the ResNet-18. The values in the matrix are estimated with a 5-batch evaluation
under PGD-20 attack.

mated payoff matrix of different network structures on dif-
ferent datasets. Among them, Figure A1a and A1b are gen-
erated on a 4-exit ResNet-18 network, while Figure A4 and
A5 are generated on a 5-exit VGG-16 network. Like Figure
3, the A-D mismatch can also be easily observed in these
figures, i.e., the lowest value of each column is the diagonal
element. Although in extremely special cases, we can ob-
serve some counterexamples, it may be explained by the in-
sufficient accuracy in estimating the payoff matrix, and this
anomaly can be avoided when we test with larger datasets.

C. Further Discussion

C.1. Is EoT All You Need?

Expectation over Transformation (EoT) [1] is a widely used
technique to counteract the randomness in the robustness
evaluation of networks, which seems to be an alternative to
AIMER. However, we argue that AIMER has its unique ad-
vantage, i.e., the online computational cost is significantly
lower than EoT. In Table A7, we compare the experimental
results of simply using EoT and applying AIMER in evalu-
ating a multi-exit neural network with a dynamic inference
strategy. It can be observed that when EoT struggles to
catch up with the performance of AIMER, its online cost
sharply rises. In contrast, AIMER achieves a much higher
online efficiency, while it only needs to calculate the offline



payoff matrix beforehand. This solution is rather effective
when encountered with heavy evaluation tasks, e.g., when
the attack settings include AutoAttack or multiple attacks.

C.2. A Dialectical Perspective on A-D Mismatch
This paper discovers the A-D mismatch phenomenon in the
robustness evaluation of multi-exit neural networks. On one
hand, it leads to an overestimation of the network’s robust-
ness when evaluating with a fixed exit, resulting in mea-
sured results higher than the network’s true robustness (Sec-
tion 3.2). Therefore, it can be considered a factor hindering
the robustness evaluation process. However, on the other
hand, for networks that tend to use different exits for infer-
ence (including dynamic and random inference), A-D mis-
match is an unavoidable phenomenon. In other words, the
attacker can only minimize the mismatch through methods
like AIMER (Section 4.2) but cannot completely eliminate
it. In such cases, the defender can still apply methods like
NEED to enhance the mismatch rate for more robustness
(Section 4.3).

We believe that whether A-D mismatch is good or bad is
still an open question. Due to the uncertainty in the choices
made by both the attacker and defender, the additional ro-
bustness introduced by mismatch cannot (in most cases) be
entirely disentangled from the network’s intrinsic robust-
ness. Therefore, we can even consider it as a part of the
multi-exit adversarial defense methods. However, consid-
ering that excessive mismatch can have a significant impact
on the results, efforts should be made to minimize its effects
during evaluation. This will enable researchers in the field
of adversarial defense to have a more accurate understand-
ing of the true effectiveness of their defense methods.

D. Inference of Multi-Exit Neural Networks
In this paper, the inference strategies of multi-exit neural
networks are divided into the following three categories:

Static inference makes predictions with fixed exit(s). The
any-time prediction strategy (i.e., using a fixed exit for in-
ference) in previous literature [10, 12, 16, 43] belongs to
this category. We formulate this inference as follows:

f static
ω,Ed

(x) =
1

|Ed|

∑

i↔Ed

fωi(x) (15)

Dynamic inference is another commonly used inference
strategy of multi-exit neural networks. It sequentially de-
cides whether to break from the current exit according to
a confidence threshold. The budgeted prediction strategy
used in previous literature [10, 12, 16, 43] belongs to this

category. We formulate it as

fdynam
ω (x) =






fω1(x), if ϑ1(fω1(x))

fωi(x), if
∧i↗1

j=1 ¬ϑj(fωj (x)) ↙ ϑi(fωi(x)),

2 ≃ i ≃ L⇐ 1

fωL(x), otherwise

,

(16)
where ϑi : Y ⇒ {0, 1} is a boolean-valued function that

evaluates whether the confidence of the prediction qualifies
a certain condition, e.g., the maximal entry of the prediction
is larger than a threshold or the entropy of the prediction is
smaller than a threshold.

Random inference is an ad-hoc inference strategy in our
paper as the defender’s counterpart of partial attack, which
can increase the difficulty of attack by making the A-D
match more difficult. It is formulated as:

f random
ω,sd (x) = f static

ω,random(A,sd)(x) (17)

Another important function of this type of inference is
to approximate the model’s behavior of dynamic inference.
Note that in different dynamic inference implementations,
the function ϑ is not unique, making it very hard to establish
a universal model of the network’s behavior under attack.
Hence, we utilize the probabilistic behavior of the network
when it is attacked, taking a random inference model as a
surrogate for the dynamic inference model in AIMER.

E. A Visual Comparison Between AIMER and
Previous Evaluation Schemes

Figure A2 makes a comparison between AIMER and pre-
vious evaluation schemes, from which we can easily figure
out their difference in the choice of target exits and strate-
gies to find an optimal scheme for attack.

In a single attack (Figure A2(a)), the attacker only tar-
gets one of all the exits for generating adversarial examples,
while the rest of the exits are overlooked. This attack can
be easily detoured when the defender uses an exit that is
not targeted by the attacker. In contrast, an average attack
(Figure A2(b)) goes to the other extreme by averaging the
adversarial effect produced on each exit. Although it con-
siders each exit, its impact on each individual exit is too dis-
persed, significantly weakening the attack effect. This can
lead to an overestimation of robustness when the defender
relies solely on one exit for inference. The max-average at-
tack (Figure A2(c)) addresses this issue by using the “best”
choice among all single attacks to generate adversarial ex-
amples. However, this approach is still limited by the best
performance of single attacks. Also, the objective of max-
average cannot always ensure it finds the single attack that
minimizes the evaluated robustness (see Section 4.2).



Figure A2. A visual comparison between AIMER and previous evaluation schemes.

AIMER (Figure A2(d)) differs from the aforementioned
attacks in that, set in the context of a two-player zero-sum
game, it not only enumerates all possible ensembles of exits
but also spans these ensembles as a basis in a probability
space. Within this space, it searches for the optimal attack
strategy. Therefore, compared to the previous three types
of attacks, AIMER is capable of finding a more effective
solution for the attack that optimizes the effect of the attack
over a broader range.

F. Implementation Details
In this section, we elaborate on the detailed implementation
of this paper. First, we explain the algorithmic process of
AIMER; then, we analyze the time complexity of the pay-
off matrix approximation step and test its dynamic perfor-
mance to decide the optimal parameter; thereafter, we fur-
ther demonstrate the details in the experiments, including
the implementation of multi-exit neural networks, the attack
algorithms used in the evaluation, the experimental environ-
ment and the setting of hyperparameters.

F.1. The Algorithm of AIMER
We provide a detailed introduction to the algorithmic pro-
cess of AIMER. As shown in Algorithm 1, we first initialize
the defender’s strategy according to the type of inference
(static, random, or dynamic) used by the target multi-exit
neural network. Next, we conduct a small-scale matrix test
on the target multi-exit neural network, traversing all com-
binations of attack and inference exit ensembles and record-
ing the accuracy for each scenario to estimate the defender’s

Algorithm 1 Adaptive Evaluation of Multi-Exit Robustness
(AIMER)
Input: multi-exit neural network fω, inference type t, clean

data x, ground-truth labels y, exit ensemble for static
inference Ed, probability vector for random inference
pd, batch size b, number of batches for quick test m

Output: Adversarial data for AIMER evaluation xadv
AIMER

1: Initialize sd ∝ INIT DEF(fω, t, x, y, Ed, pd, b, m)
ϖ Algorithm 2

2: Initialize M̂d
∝APPROXIMATE PAYOFF(fω, t, x, y,

b, m) ϖ Algorithm 3
3: Initialize sa↓ ∝ best attacker strategy(M̂d, sd)

ϖ Eq. (7)
4: Initialize xadv

AIMER ∝ partial attack(fω, x, y, sa↓)
ϖ Eq. (4)

5: return xadv
AIMER

approximate payoff matrix. Then, we use the estimated pay-
off matrix and the defender’s strategy to calculate the best
strategy for the attacker in the game. Finally, we use the
partial attack to implement the attacker’s strategy, generat-
ing AIMER adversarial samples for robustness evaluation.

F.2. Time Complexity and Dynamic Performance in
Approximation of Payoff Matrix

In the algorithm of AIMER, we use an approximated pay-
off matrix rather than a payoff matrix tested on the com-
plete dataset to reduce the computational cost. Since the
network performance on a random subset of a dataset can



Figure A3. Dynamic performance of AIMER using different num-
bers of 128-sample batches to approximate the payoff matrix. The
gray area in the figure represents the time consumption in the test.

Algorithm 2 Initialization of the defender’s strategy
(INIT DEF)
Input: multi-exit neural network fω, inference type t, clean

data x, ground-truth labels y, exit ensemble for static
inference Ed, probability vector for random inference
pd, batch size b, number of batches for quick test m

Output: The defender’s strategy sd

1: if t =’static’ then
ϖ Initialize the defender’s strategy for static

inference
2: Initialize sd ∝ [0 for each E ↑ A]
3: sdEd

∝ 1
4: end if
5: if t =’random’ then ϖ Initialize the defender’s

random inference strategy
6: Initialize sd ∝ pd

7: end if
8: if t =’dynamic’ then ϖ Approximate the defender’s

dynamic inference strategy
9: Initialize sd ∝ [0 for each E ↑ A]

10: for i = 1 to m do ϖ Use a small m that is trivial
compared with the complete dataset

11: for j = 1 to b do
12: xadv

avg ∝ average attack(fω, xij , yij)
13: E ∝ exit from ensemble(fω, xadv

avg )
ϖ Detect which exit ensemble is used

14: sdE ∝ sdE + 1/mb
15: end for
16: end for
17: end if
18: return sd

be highly consistent with that of on the complete dataset,
we intuitively use a small number of data batches to cal-

Algorithm 3 Calculation of the approximated payoff matrix
for the defender (APPROXIMATE PAYOFF)
Input: multi-exit neural network fω, clean data x, ground-

truth labels y, batch size b, number of batches for quick
test m

Output: approximated payoff matrix for the defender M̂d

1: Initialize M̂d
∝ [[0 for each E ↑ A] for each E ↑ A]

2: for each Ea ↑ A do
3: for each Ed ↑ A do
4: for i = 1 to m do ϖ Use a small m that is

trivial compared with the complete dataset
5: for j = 1 to b do
6: xadv

par ∝ partial attack(fω, xij , yij , Ea)
7: sdE ∝ sdE + 1/mb
8: ŷ ∝

1
|Ed|

∑
k↔Ed

(fωk(x
adv
par ))

ϖ Inference with Ed using Eq. (15)
9: if ŷ = yij then

10: M̂d
Ea,Ed

∝ M̂d
Ea,Ed

+ 1/mb
11: end if
12: end for
13: end for
14: end for
15: end for
16: return M̂d

culate each element in the matrix. Suppose that we use m
batches of data (with a batch size b) to test each accuracy
score (i.e., the payoff function value) in the matrix, and the
matrix is of size |A| ⇑ |A|, where |A| = 2L ⇐ 1. The time
complexity of calculating the approximated payoff matrix
is O(m ⇑ b ⇑ 2L), which is exponential due to the enu-
meration of all possible ensemble of exits. In such a case,
we have no choice but to reduce the computational cost on
other dimensions like m.

To identify a proper m that allows both efficient calcula-
tion of the payoff matrix and the effective implementation
of AIMER, we conduct the following dynamic performance
test. We evaluate the random inference (same setting as Sec-
tion 4.2) with AIMER using different m values and monitor
4 factors: (1) the time required to calculate the payoff ma-
trix, (2) the mean square error between the approximated
matrix and an accurate matrix, (3) the accuracy under PGD
attack and (4) the accuracy under VMI-FGSM attack. In
Figure A3, it can be noticed that when m is larger than 2,
the accuracy scores are not sensitive to the choice of m;
also, the mean square error of the approximated matrix de-
creases sharply until m = 5. To achieve a balance between
computational efficiency, error in approximation and accu-
racy, we finally choose m = 5 to keep the mean square error
under 0.0001.



F.3. Multi-Exit Neural Network Architectures
We employ 7 multi-exit neural network architectures in
our experiments, 4 of them modified from common single-
exit network architectures (ResNet-18 [14], VGG-16 [31],
WideResNet-34-10 [46], ViT-B/16 [7]) and 3 of them de-
signed by previous researchers (MSDNet [17], L2W-DEN
[12] and RANet [43]).

Multi-exit ResNet-18. We modify ResNet-18 into
a 4-exit network by inserting a simple branch classifier
between each two blocks of the residual network, and 3
classifiers are inserted in total. The structure of the three
branch classifiers can be expressed in PyTorch pseudocode:
[torch.nn.AdaptiveAvgPool2d((2,2)),

torch.nn.Linear(4*c, c),

torch.nn.ReLU(), torch.nn.Dropout(),

torch.nn.Linear(c, num classes)]. The pa-
rameter c is set to [160, 320, 640] for each branch classifier
respectively and num classes is the number of classes
in the dataset.

Multi-exit WideResNet-34-10. We modify
WideResNet-34-10 into a 4-exit network by inserting
a simple branch classifier between each two blocks, and 3
classifiers are inserted in total. The structure of the three
branch classifiers can be expressed in PyTorch pseudocode:
[torch.nn.AdaptiveAvgPool2d((2,2)),

torch.nn.Linear(4*c, c),

torch.nn.ReLU(), torch.nn.Dropout(),

torch.nn.Linear(c, num classes)]. The pa-
rameter c is set to [64, 128, 256] for each branch classifier
respectively and num classes is the number of classes
in the dataset.

Multi-exit VGG-16. We modify VGG-16 into a
5-exit network by inserting a simple branch classifier
between each two blocks of the VGGNet, and 4 classifiers
are inserted in total. The structure of the four branch
classifiers can be expressed in PyTorch pseudocode:
[torch.nn.AdaptiveAvgPool2d((1,1)),

torch.nn.Linear(c, c), torch.nn.ReLU(),

torch.nn.Dropout(), torch.nn.Linear(c,

num classes)]. The parameter c is set to
[64, 128, 256, 512] for each classifier respectively and
num classes is the number of classes in the dataset.

Multi-exit ViT-B/16. We modify ViT-B/16 into a 4-
exit network by inserting a simple branch classifier between
each two blocks and 3 classifiers are inserted in total. The
structure of each inserted classifier is in line with that of the
default classifier head in ViT-B/16.

MSDNet. MSDNet, or Multi-Scale Dense Networks, is
a convolutional neural network architecture designed for ef-
ficient and scalable image classification. In this paper, we
mainly utilize its feature of multi-exit inference. Our exper-
iments are based on the official implementation of MSD-
Net2. We build the network architecture with the following
settings:
• For CIFAR-10: nBlocks=5, nChannels=64,

base=4, stepmode=’even’, step=2,

growthRate=6, grFactor=’1-2-4’,

prune=’max’, bnFactor=’1-2-4’,

bottleneck=True, reduction=0.5;
• For Tiny ImageNet: nBlocks=5, nChannels=32,

base=4, stepmode=’even’, step=4,

growthRate=16, grFactor=’1-2-4-4’,

prune=’max’, bnFactor=’1-2-4-4’,

bottleneck=True, reduction=0.5.

L2W-DEN. L2W-DEN is an enhanced multi-exit ar-
chitecture that better trains the network by reweighting
the samples. We use the official code of L2W-DEN3

and base this architecture on the MSDNet with the
following setting: nBlocks=5, nChannels=16,

base=1, stepmode=’lin grow’, step=2,

growthRate=6, grFactor=’1-2-4’,

prune=’max’, bnFactor=’1-2-4’,

bottleneck=True, reduction=0.5.

RANet. RANet is a resolution adaptive multi-
exit neural network architecture that utilizes spa-
tial redundancy of input images. We conduct our
experiments on this network architecture using its
official implementation4 with the following setting:
nBlocks=2, block step=2, nChannels=16,

base=1, stepmode=’even’, step=4,

growthRate=6, scale list=’1-2-3-3’,

grFactor=’4-2-1-1’, prune=’max’,

bnFactor=’4-2-1-1’, bottleneck=True,

reduction=0.5, compress factor=0.25.

F.4. Attack Algorithms Applied in Experiments
In our experiments, we apply 6 attack algorithms in total
to verify the effectiveness of AIMER and NEED. A brief
introduction to these attacks and reasons for choosing them
are stated below.

Fast Gradient Signed Method (FGSM) attack [32] is
known for its simplicity and computational efficiency. It
generates adversarial examples in a single step by perturb-
ing the original input image. This perturbation is calculated

2
https://github.com/kalviny/MSDNet-PyTorch

3
https://github.com/LeapLabTHU/L2W-DEN

4
https://github.com/yangle15/RANet-pytorch

https://github.com/kalviny/MSDNet-PyTorch
https://github.com/LeapLabTHU/L2W-DEN
https://github.com/yangle15/RANet-pytorch


by taking the sign of the gradients of the loss with respect
to the input image and then multiplying it by a small ϱ. This
creates an adversarial image that is very close to the original
but enough to deceive the model.

Projected Gradient Descent (PGD) attack [22] is an it-
erative adversarial attack method that enhances the effec-
tiveness of perturbations by applying small changes to the
input data across multiple steps, each time adjusting the per-
turbation to maximize the model’s prediction error. Unlike
simpler, single-step methods like FGSM, PGD is more thor-
ough and often more successful at deceiving models, es-
pecially those with defenses against adversarial examples,
making it a robust tool for evaluating model security. In
our experiments, we employ FGSM and PGD, two simple
yet classic attack algorithms as a reference benchmark for
testing the robustness of defense methods.

Expectation over Transformation (EoT) PGD [1] is
used for crafting more effective adversarial examples
against models that employ randomized defense strategies.
It takes into account the randomness in these defenses by
averaging the gradients of the model’s output with respect to
the input over multiple transformations. This approach en-
sures that the adversarial perturbations are robust to the ran-
dom transformations applied as a part of the defense mech-
anism, thereby increasing the likelihood of successfully de-
ceiving the model even when it employs randomization as
a countermeasure to adversarial attacks. Considering the
possible randomness in the strategy of NEED, we employ
the EoT-enhanced PGD algorithm in our experiments as a
stronger attack.

Variance Tuning (VMI-FGSM) [36] is proposed to en-
hance the class of iterative gradient-based attack methods
and improve their attack transferability. In this paper, we
consider this attack algorithm for the multiple exits to be
partially heterogeneous network architectures, and by im-
proving the transferability, we aim to generate more univer-
sal adversarial examples for all the network exits.

AutoAttack [4] is an ensemble of multiple adversarial at-
tack methods, designed to automatically and robustly eval-
uate the resilience of neural networks against adversar-
ial examples. It combines several state-of-the-art attack
techniques, including gradient-based and decision-based at-
tacks, ensuring a comprehensive assessment by exploiting
different aspects of model vulnerabilities, often without re-
quiring any hyperparameter tuning. We employ AutoAttack
in our experiments as a comprehensive indicator for the ad-
versarial robustness of multi-exit neural networks.

LAFIT [45] attack pierces through neural networks and
generates strong adversarial examples with the help of latent
features. We choose this attack for its close connection with
multi-exit neural networks in utilizing early exit results to
optimize the adversarial examples.

To implement these algorithms, we refer to the code of
torchattacks

5 Python package and their official im-
plementation6, and further add support for multi-exit neural
network attacks, enabling the application of partial attacks
in various algorithms.

F.5. Environment and Hyperparameter Settings
Experimental environment. Our experiments are con-
ducted in Python 3.8 environment on single NVIDIA RTX
A6000 GPU. We use the deep learning framework PyTorch
1.13 to build all the neural network models and carry out
training and testing.

Model training. We train all the networks with different
architectures for 100 epochs. We optimize with the SGD
optimizer, setting the momentum to 0.9. We adjust the
learning rate ω of training with a dynamic scheme by ini-
tializing ω = 0.1 (for some adversarial training methods
with difficulty in convergence, we set ω = 0.01 or even
smaller) and reducing it to 0.1 and 0.01 times the original
value at the epochs 75 and 90 respectively.

Dynamic inference. To implement the dynamic inference
of multi-exit neural networks, we refer to the official source
code of [17]. Specifically, it sets a threshold value for the
unnormalized maximum logits at each exit, and sequentially
(from earlier exits to later exits) decides whether to finish
the inference from the current exit.

On different network architectures and different
datasets, we apply different thresholds for them fol-
lowing [16]. In multi-exit ResNet-18, we set the
thresholds to [6.33, 5.62, 4.85,⇐108] for CIFAR-10
and [7.86, 9.05, 7.54,⇐108] for SVHN; in multi-exit VGG-
16, we set the thresholds to [4.25, 6.33, 6.36, 3.76,⇐108]
for CIFAR-10 and [3.17, 8.66, 7.69, 7.67,⇐108] for
SVHN; in WideResNet-34-10, we set the thresholds to
[13.03, 9.46, 9.70,⇐108] for CIFAR-10; in MSDNet,
we set the thresholds to [11.31, 9.48, 7.27, 5.46,⇐108]
for CIFAR-10, and [5.83, 4.43, 4.61, 3.83,⇐108] for
Tiny ImageNet; in L2W-DEN, we set the thresholds to
[7.92, 6.63, 5.28, 3.66,⇐108] for CIFAR-10; in RANet, we
set the thresholds to [8.35, 6.10, 3.66,⇐108] for CIFAR-10.

5
https : / / github . com / Harry24k / adversarial -

attacks-pytorch

6
https://github.com/lafeat/lafeat

https://github.com/Harry24k/adversarial-attacks-pytorch
https://github.com/Harry24k/adversarial-attacks-pytorch
https://github.com/lafeat/lafeat


Table A9. Comparison in methodology between our work and Meunier et al. [24].

Method What (is it)? When (to apply it)? Where (to apply it)?
AIMER (ours) robustness evaluation scheme test phase multi-exit neural networks
NEED (ours) defense (aggregation strategy) test phase multi-exit neural networks
Meunier et al. [24] defense (adversarial training) training phase randomized classifiers

G. Difference From Previous Work of Adver-
sarial Game

In this section, we compare this paper and the most related
work [24] in detail and clarify the stark difference between
them. Overall, [24] answers two questions for randomized
classifiers: (1) whether the attack and defense of random-
ized classifiers can always reach a Nash Equilibrium; (2)
How to design an algorithm for learning an optimally ro-
bust randomized classifier. Albeit game theory is applied to
study adversarial robustness in both works, we argue that
the motivation, purpose, methodology, and design of ex-
periments are essentially different from our paper.
• Motivation. The critical A-D mismatch phenomenon is

only specified in our work, which is a new discovery that
motivates us to carry out our research.

• Purpose. Generally speaking, our paper is devoted to
tackling the widespread overestimation of the adversar-
ial robustness of multi-exit neural networks. Differently,
[24] focuses on the theoretical part and is dedicated to
showing that the Nash Equilibrium in the adversarial ex-
amples game can be reached.

• Methodology. The methods proposed in two studies dif-
fer in terms of what they are, when and where to apply
them. Table A9 clearly compares their differences.

• Design of experiments. In our paper, we have vali-
dated the effectiveness of our method in a broader range.
Our experiment includes more attack algorithms (FGSM,
PGD, EoT-PGD, VMI-FGSM, AutoAttack) to verify the
generalizability of our methods over varied adversarial
settings. Also, we have included more network archi-
tectures to validate if our methods can work on different
multi-exit neural networks.
Additionally, we believe our paper better bridges the gap

between theory and application. In [24], though the authors
thoroughly study the properties of the adversarial game,
they claim that the algorithms “are not easily practicable in
the case of deep learning”. In contrast, our paper identifies a
direct application in multi-exit deep neural networks and in-
novatively applies the theoretical results in both testing and
improving the robustness of multi-exit neural networks.

H. Limitations and Future Work
In this paper, we propose an effective evaluation scheme
AIMER for measuring the adversarial robustness of multi-

exit neural networks, and a corresponding defense method
NEED that counteracts the attack strategy of AIMER to im-
prove the additional robustness of the network. However,
there are still many limitations in our current work, which
deserve further in-depth study in the future work.

Approximation of the payoff matrix. In AIMER, we
simply use an approximated matrix as a surrogate for the
true payoff matrix in the game. This may raise concerns of
the following two aspects:
• The imprecision in the estimated values can lead to un-

stable results. While we cannot obtain an exact payoff
matrix and resorting to approximation is a necessity, the
resulting inaccuracy may potentially lead to unexpected
outcomes. For example, some counterexamples of the
A-D mismatch phenomenon may appear in certain situa-
tions, where AIMER might deviate from the best strategy.

• Estimating the payoff matrix comes with additional com-
putational costs. To obtain the estimation of payoffs, ma-
trix testing of the performance of the network for various
attack scenarios is required during evaluation, enumerat-
ing the estimated values for each type of partial attack and
defense. The computational cost of this process is depen-
dent on two factors: (1) the size of the action spaces for
both the attacker and defender and (2) the scale of test-
ing for each element in the matrix. When the number of
network exits increases, the size of action space also in-
creases (exponentially), resulting in a significant compu-
tational burden and thus limiting the feasibility of AIMER
for cases with more network exits. Similarly, when higher
estimation precision is needed for the payoff matrix, the
testing scale for each matrix element also increases, pos-
ing an inevitable trade-off between cost and precision.
Nevertheless, we have illustrated that AIMER can effec-

tively mitigate A-D mismatch and minimize the additional
robustness using an approximation. Future work can focus
on seeking a more precise measurement of the payoff ma-
trix, as well as reducing the computational cost in testing the
multi-exit properties to acquire the matrix. We believe that
with breakthroughs in these directions, AIMER can achieve
a more efficient and accurate evaluation of the intrinsic ad-
versarial robustness of multi-exit neural networks.

Using random inference as a surrogate for dynamic in-
ference. The overall framework of this paper is estab-



lished on the game theory, in which probabilistic behav-
iors can be better modeled than other behaviors with com-
plex mechanisms (e.g. dynamic inference with confidence
thresholds). Hence, we opt to simplify the process of dy-
namic inference, i.e., instead of setting complex heuristic
rules or considering limited possible cases, we view from
the perspective of the attacker and treat the network’s choice
of exits as a probabilistic behavior. Although extensive ex-
periments on different architectures can verify the effective-
ness of our method on networks with dynamic inference, the
mechanism of dynamic inference only has a surrogate in the
current framework, and more rigorous theoretical explana-
tions is left to be made in future work.

The metric for measuring A-D mismatch. In the exper-
iments section, we introduce the mismatch rate as a quan-
titative metric to measure the extent of A-D mismatch. Al-
though this metric is sufficient for demonstrating the effec-
tiveness of our method, we have identified certain limita-
tions with it. As shown in Figure 6, the distribution of data
points on the mismatch rate axis exhibits a high variance, in-
dicating that our measurement of A-D mismatch is not very
accurate. Upon reflection, we realize that the mismatch rate
metric does not take into account the differences between
different exits but treats each exit equally. The issue with
this approach is that if the classifiers of exit have varying
discriminative power, these differences cannot be reflected
in the mismatch rate, ultimately leading to increased errors.
We expect in future work, more reasonable metrics for mea-
suring mismatch can be proposed to push forward the study
of the adversarial robustness of multi-exit neural networks.



Figure A4. The defender’s approximated payoff matrix of VGG-16 on SVHN dataset. The values in the matrix are estimated with a
5-batch evaluation under PGD-20 attack.



Figure A5. The defender’s approximated payoff matrix of VGG-16 on CIFAR-10 dataset. The values in the matrix are estimated with a
5-batch evaluation under PGD-20 attack.


