Satellite to GroundScape - Large-scale Consistent Ground View Generation from
Satellite Views

Supplementary Material

In this supplementary material, we present further de-
tails on the methodology (Sec. 1), provide comprehensive
information about the dataset (Sec. 2), report additional ex-
perimental results (Sec. 3), and discuss the limitations of
our approach (Sec. 4).

1. Additional methodology details
1.1. Scene initialization and representation

Our approach initializes the 3D scene in a format that
prioritizes preserving the fidelity of the original satellite
data, enabling effective camera control and ground-view
generation. Unlike existing methods such as InfinitCity
[5] and Sat2Scene [4], which utilize sparse point clouds,
we represent the scene as a unified triangle mesh M =
(V,F,E, Fyy). This mesh consists of vertices (3D po-
sitions), faces, edges, and texture coordinates that define
the appearance of each face, providing a denser and more
comprehensive representation of the scene’s geometry, ap-
pearance, and visibility compared to sparse point clouds.
We begin with a collection of satellite images {I?} and use
traditional multi-view stereo (MVS) algorithms [2] to gen-
erate depth maps {D?}. These depth maps are projected
and fused into 3D space to form an initial point cloud, Py.
Using the geometry refinement method described in [10],
Py is refined to P;, which better captures building facades.
The refined point cloud P; is then triangulated to produce
the triangle mesh M = (V, F, E). Finally, texture coor-
dinates Fyy are computed by mapping the satellite images
{I'} onto M using texture mapping techniques [6].

1.2. Ground view foundation model

Our framework is built upon a pre-trained LDM [7], specif-
ically leveraging a UNet-based architecture, €y, trained on
the large-scale text-image dataset LAION-5B [8]. This
model has demonstrated robust capabilities in generat-
ing high-fidelity images within the ground-view domain
[7]. Our objective is to guide €y effectively to synthesize
ground-view images with layouts and appearances that ac-
curately correspond to the input satellite views and their as-
sociated camera poses. To achieve this, we use €y as a foun-
dational model and integrate additional modules to bridge
the domain gap between satellite and ground-view imagery.

1.3. Network architecture

We show the network architecture of satellite-guided de-
noising and satellite-temporal denoising process, €g, Esqt
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(a) Architecture of €g and Esqt (b) Architecture of a block of €4

Figure 1. Network architecture of eg, 54 and e4. We provide
detailed network architecture as the additional details to Fig. 3 &
Fig. 4 in the main manuscript.

and €4 in Fig. 1. The LDM ¢y employs a standard UNet
architecture. The &+ is designed to encode the satel-
lite appearance I, using a combination of “CrossAtten-
tionDownBlock™, "DownBlock” and ”’CrossAttentionMid-
Block”. For satellite-temporal denoising module €4, we en-
hance the existing UNet structure by incorporating “Tem-
poralResBlock” and “TemporalAttnBlock”. The “Tem-
poralResBlock™ contains several 3D convolution layers,
while the "Temporal AttnBlock™ performs attention opera-
tions across the temporal axis (T) to achieve inter-frame
learning.

1.4. Training & inference

The training process consists of two stages: in the first
stage, Eqq¢ 18 trained using paired satellite appearance and
ground truth images over 50,000 iterations with a batch size
of 32. This stage enables £, to extract high-level scene
layout information to guide the LDM. In the second stage,
&y and €4 are trained on paired sequences of five satellite
appearance views and their corresponding ground truth over
100,000 iterations with a batch size of 12. This stage allows
&4 and €, to learn the motion and temporal features. The in-
ference process involves satellite-conditioned and temporal-
conditioned denoising, as detailed in Sec. 3.3. We adopt the
deterministic sampling process from DDIM [9] with 20 de-
noising steps under the classifier-free guidance framework

[3].
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Figure 2. Panaroma to perspective views. The raw ground data is
provided in panoramic format, where the coordinates of each pixel
are defined by 0 and ¢ in spherical projection. Each perspective
view is resampled from a region of the spherical surface within
[Omin, Omaz], [pmin, Pmaz]-

2. Additional dataset details
2.1. Ground data processing

The raw ground data is obtained via the GoogleStreetView
API, which provides panoramic images at a resolution of
1024x2048, along with 3D location (longitude, latitude, el-
evation), and horizontal orientation (heading angle). The
transformation process for converting each panoramic im-
age into perspective views is detailed using camera intrinsic
and extrinsic parameters. We define each perspective view
within a panorama using the parameters 6, ¢, FOV, H,W.
Here, 6 € [0,360], and ¢ € [—90,90] specify the orien-
tation of the perspective image in azimuth and altitude an-
gles, respectively. F'OV denotes the field of view, which
implicitly determines the focal length, H, and W repre-
sent the height and width of the perspective image. Specif-
ically, we resample the “LR,” “LF,” “RE” and “RR” per-
spective images for each panorama using the parameters
f = [60,120,240,300], ¢ = 15, FOV = 75, H =
256, W = 256.

2.2. Train & test data split

The dataset spans a total area of 130K M 2, divided into
90 tiles, each covering a 600 x 600 region, as illustrated
in Fig. 3. For fair evaluation, the tiles are partitioned into
training and testing sets in a 70/20 ratio.

3. Additional experiment results

Additional qualitative baseline comparisons are presented
in Fig. 5, serving as an extension of Fig. 6 in the main
manuscript. The results demonstrate that our method con-
sistently generates photorealistic ground views that main-
tain coherence across neighboring perspectives.
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Figure 3. Train & test data split. The data is split into training
and testing sets based on tiles, with each tile covering a 600 x 600
m area. A total of 90 tiles are used, with 70 tiles designated for
training (in blue) and 20 tiles for testing (in pink).
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Figure 4. Limitation. In shadow regions, our satellite-guided de-
noising process struggles to extract meaningful texture features for
the initial ground view generation, leading to incorrect textures
and facade layouts. Furthermore, the erroneous initial ground view
affects the generation of subsequent views in the sequence.

4. Limitation

Although Sat2GroundScape generates photorealistic
ground views with strong multi-view consistency, it has
certain limitations, as illustrated in Fig. 4. When satellite
views provide insufficient appearance information, such
as in shadowed or textureless regions, the s,; module in
the satellite-guided denoising process is unable to extract
useful features for ground view generation, resulting in
random ground layouts or appearances. This limitation also
affects the satellite-temporal denoising process, leading to
inconsistencies across the entire sequence of ground views.
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Figure 5. Additional qualitative baseline comparison on the Sat2GroundScape dataset. Our method generates more photorealistic and
consistent ground views compared to the baseline methods. Notably, SceneScape [1] in site 3 produces a black view due to the absence of
warped content from the previous view.
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