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In the supplementary material, we begin with notations for
foreground and background in Sec. 6, followed by a de-
scription of the background knowledge about persistent ho-
mology in Sec. 7. Next, we provide detailed introduction
to our layout-guided pathology image generation part in
Sec. 8, followed by the comprehensive descriptions of the
datasets in Sec. 9. The implementation details are provided
in Sec. 10. In Sec. 11, we discuss the evaluation metrics in
detail. To ensure the generation accuracy, we conduct the
analysis on cell count distribution across training and test
sets in Sec. 12. More ablation studies are given in Sec. 13.
The biological plausibility analysis by the domain expert
is provided in Sec. 14. Then, we provide the spatial point
pattern analysis using multivariate Ripley’s K-functions in
Sec. 15, followed by the discussion on computational cost
and scalability of our method in Sec. 16. Finally, we discuss
the limitations of our method in Sec. 17.

6. Notes on Foreground and Background

Here, we provide some notations about foreground and
background in our paper. In our experiments, the back-
ground of the layouts is black (the pixel value of 0) as can
be seen in Fig. 2 and Fig. 5. For better visualization, we
display the multi-class cell layouts with white as the back-
ground in Fig. 1, Fig. 3 and Fig. 4 of the main paper.

7. Background: Persistent Homology

In algebraic topology [49], homology classes capture topo-
logical features across different dimensions. For instance,
0-, 1-, and 2-dimensional structures represent connected
components, loops (or holes), and voids, respectively. In bi-
nary images, the number of d-dimensional topological fea-
tures is described by the d-dimensional Betti number, βd.1

While topological structures are well-defined in binary im-
ages, extending this theory to real-world data, which is often
continuous and noisy, poses challenges.

In the case of analyzing cell point clouds, where data is
inherently discrete, we require a robust framework to infer
the underlying topological structures. Persistent homology,
developed in the early 2000s [13, 14], addresses this need
by tracking the evolution of topological features across mul-
tiple scales.

Given a point cloud in the 2D space P ⊆ R2, a filtration
is built by considering a growing family of simplicial com-
plexes constructed from the point cloud as a function of a

1Technically, βd measures the dimension of the d-dimensional homol-
ogy group. The number of distinct homology classes is exponential in βd.

parameter (e.g., radius). For each parameter value, we de-
fine a set of simplices connecting the points, starting from
isolated vertices and gradually adding edges and higher-
dimensional simplices as the parameter increases. This cre-
ates a series of nested simplicial complexes: ∅ ⊆ Kr1 ⊆
Kr2 ⊆ ... ⊆ Krn . As the parameter grows, the topology
of the complexes changes, with new connected components
and loops emerging or vanishing.

Persistent homology captures these changes, tracking the
birth and death of topological features over the filtration.
The result is summarized in a persistence diagram (Dgm),
which provides a multi-scale representation of the topologi-
cal structures. A Dgm consists of points in a 2D plane, each
representing a topological feature. The coordinates of each
point, (b, d), correspond to the feature’s birth and death fil-
tration values, providing a concise description of its persis-
tence across scales.

8. Layout To Image Generation
In this section, we introduce our layout-guided image gen-
eration framework in detail. The framework leverages a
guided diffusion model (ADM) [11] to generate H&E im-
ages conditioned on multi-class cell layouts. The layouts
serve as explicit conditional inputs to the diffusion model,
which learns to reconstruct high-resolution pathology im-
ages from noisy counterparts during the reverse diffusion
process. The conditioning mechanism is implemented us-
ing a cross-attention layer that seamlessly integrates cell
layout information into the diffusion model. As shown in
Fig. 6, the generated H&E images generated by the model
accurately depict the relative densities and arrangements of
different cell types, while preserving the fine-grained de-
tails characteristic of histopathology images, such as nu-
clear shapes and staining patterns. This helps greatly im-
prove the performance of downstream tasks, such as cell
detection and classification.

9. Details of the Datasets

BRCA-M2C dataset [1] is obtained from the TCGA
dataset and contains 80, 10, and 30 pathology image patches
for training, validating, and testing, respectively. This
dataset provides dot annotations for multi-class classifi-
cation in breast cancer images. All images are around
500 × 500 pixels. The cell classes are lymphocytes, tumor
or epithelial, and stromal cells.

Lizard Dataset [22] is a large-scale resource for nuclear in-
stance segmentation and classification, specifically target-



Figure 6. Qualitative results generated by our layout and image
generation framework for downstream tasks.

ing colonic tissue in computational pathology. It includes
nearly 495, 000 manually and semi-automatically annotated
nuclei, categorized into six classes: epithelial cells, connec-
tive tissue cells, lymphocytes, plasma cells, neutrophils, and
eosinophils. 238 images in the dataset are sourced from 6
publicly available datasets, ensuring diverse representations
of normal, inflammatory, dysplastic, and cancerous colonic
conditions.

10. Implementation Details
Our work is mainly based on guided-diffusion (ADM) [11].
The condition of our model is a list of cell counts. An
embedding of the condition is obtained by using an encod-
ing network. After that, we feed this embedding to all the
residual blocks in the network by adding it to the timestep
embedding [50]. For every dataset, the image resolution is
256× 256. Our diffusion models use a cosine noise sched-
uler [50], with noising timesteps of 1000 for training. We
first pre-train the diffusion model using only Lsimple for
150K steps, then train with the three losses for 210K steps.
During the inference, we use 100 steps of DDIM [62]. The
learning rate is 2 × 10−5 and the batch size is 5. λc, λintra
and λinter are all set to 0.0005.

For the layout-guided generation model, the learning rate
is also 2× 10−5 and we train the model only using Lsimple

for 360K steps. The batch size is 6. The image resolution
is also 256× 256. These experiments were conducted on 1
NVIDIA RTX A6000 GPU with 48GB RAM.

Our experiments designate specific test sets for each
dataset to evaluate the synthetic cell layout generation pro-
cess. For the BRCA-M2C dataset, we utilize 30 images in
the test set, which were pre-defined in the dataset. To pre-
pare these for testing, each image is segmented into patches
using a sliding window approach with a stride of 32 pixels,
resulting in patches of size 256 × 256. This process yields
a total of 1, 550 patches for the BRCA-M2C dataset. We
randomly select 20% of the cell layouts as the test set for
the Lizard dataset, which lacks predefined training and test
splits. The chosen images undergo the same patching pro-

cedure, generating 256 × 256 patches, resulting in 1, 000
patches for the test set of the Lizard dataset.

In generating synthetic layouts, we aim to match the
channel-wise cell counts observed in the real layouts of the
test set. For each real test layout, we calculate the counts
of each cell type across the channels and use these as con-
ditional inputs during inference. This ensures that the gen-
erated synthetic patches exhibit similar cell count distribu-
tions to those observed in the real test layouts.

11. Evaluation Metrics
To evaluate the quality of the generated cell layouts and
pathology images, we employ a set of metrics focusing on
different aspects, such as visual fidelity, topological similar-
ity, and utility to downstream tasks.

First, the Fréchet Inception Distance (FID) [30] mea-
sures visual similarity by comparing the distributions of
features extracted from a pre-trained Inception network be-
tween real and generated images. Lower FID scores indi-
cate greater visual realism in the generated images. Feature
extraction is tailored to each dataset with custom-trained
models. Here, the FID we used is the spatial-FID pro-
posed in Spatial Diffusion [44]. The spatial-FID replaces
visual features with a spatial representation derived from
an autoencoder’s intermediate layer, and we trained the au-
toencoder in the same way. In addition, we extended it to
the Lizard dataset by training another autoencoder in the
same manner. We also evaluate the accuracy of the gen-
eration through cell count error, calculating discrepancies
between real and generated cell counts per type and overall.
In our experiments, we use the connected component label-
ing method [58] to count the cell numbers. Assume there
are n types of cells. For each cell type i, the cell count
error (CCE) across N test samples is defined as:
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where c is the cell count. In addition, our proposed TopoFD
metric is used to evaluate the topological similarity between
real and generated cell layouts. Lower TopoFD scores indi-
cate closer alignment in spatial structure.

We also use the metric proposed in [66], Maximum
Mean Discrepancy (MMD) [24] to measure the topological
difference between the real and synthetic distributions. The
persistence diagrams from synthetic and real layouts are
embedded into a reproducing kernel Hilbert space (RKHS).



The MMD computes the distance between the mean em-
beddings of these two distributions in the RKHS. Given two
sets of persistence diagrams, Dsyn = {Dgmsyn

i }Ni=1 from
the synthetic data and Dreal = {Dgmreal

j }Nj=1 from the
real data, we can define the mean of each diagram set,
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Then, the MMD is defined as:

MMD(Dsyn,Dreal) := ∥Φ(Dsyn)− Φ(Dreal)∥H
In terms of the kernel for persistence diagrams, we use the
Gaussian kernel based on the 1-Wasserstein distance be-
tween diagrams,

kW1
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)
Lastly, to enhance downstream utility, we used 2, 000

generated image-layout pairs as augmented training data for
cell detection and classification tasks, evaluating their per-
formance with the F1-score.

12. Cell Count Distribution Analysis
Also, to ensure the accurate generation of cell distributions,
the training set encompasses a wide range of cell count val-
ues. As shown in Fig. 7, we randomly select 2, 000 patches
during the training. We analyzed and observed each cell
type’s range of cell counts in the training patches to con-
firm coverage across typical values observed in test condi-
tions. This observation is crucial for the diffusion model, as
it needs exposure to the range of cell counts during train-
ing to accurately generate corresponding counts during the
inference.

13. Additional Ablation Study

Ablation Study on learning rate. This ablation study ex-
amines the effect of different learning rates on model perfor-
mance. The results indicate that a learning rate of 2× 10−5

achieves the best overall performance across all metrics,
with the lowest FID, Total Counting Error, and TopoFD
values. Higher learning rates, such as 1 × 10−4, result
in a higher total counting error and TopoFD, suggesting
that an overly large learning rate may hinder convergence.
Conversely, lower learning rates, including 1 × 10−5 and
5×10−5, show some improvements but do not reach the op-
timal balance across all metrics. The chosen learning rate
of 2 × 10−5, therefore, appears to provide the best trade-
off, facilitating convergence that enhances both cell count-
ing accuracy and fidelity in the synthetic cell layouts.

Figure 7. The statistical analysis of the cell count distributions on
the BRCA-M2C training and test sets.

learning rate BRCA-M2C
FID ↓ TCE ↓ TopoFD ↓

1e-4 0.021 12.357 75.667
1e-5 0.015 6.314 81.397
5e-5 0.066 12.367 85.949
2e-5 0.005 5.192 69.354

Table 5. Ablation study on learning rate.

14. Biological Plausibility

Specifically, we randomly selected 10 pairs of real and syn-
thetic cell layouts as shown in Fig. 8. Without revealing
their type (synthetic/real), we asked the expert to (1) iden-
tify which layout is synthetic; (2) characterize the tissue bi-
ology of these layouts. The expert achieves only a 60%
accuracy in identifying the synthetic layout, confirming the
realism of our synthetic layouts even to a domain expert.
Regarding the characterization of tissue biology, as shown
in Fig. 8, the pathologist concluded that for each pair of
layouts, the synthetic layout preserved the defining biologi-
cal characteristics of its corresponding real sample, consis-
tently reflecting benign/low-grade or cancerous/high-grade
properties. These experiments with a domain expert offer
direct evidence, beyond quantitative measures and down-
stream analyses, that our generated layouts align well with
actual biological structures.

Figure 8. Biological plausibility validated by the domain expert.



15. Spatial Point Pattern Analysis
We also evaluate our synthetic layouts using one standard
statistical method for spatial point pattern analysis. Specifi-
cally, we employ multivariate Ripley’s K-functions to eval-
uate the synthetic layouts of the BRCA-M2C dataset, which
comprises 3 cell types. For each test reference layout, we
have a corresponding synthetic layout and extract cell cen-
troids from both. We then compute 3 K-functions to capture
intra-class clustering (one per cell type) and 6 cross-K func-
tions to describe inter-class interactions. Next, we examine
the difference between real and synthetic K-values over 6
radii: [15, 30, 45, 60, 75, 90]. For each radius and each cell-
type pair, we perform a paired t-test to check if synthetic
data deviates significantly from real layouts. This procedure
yields 54 p-values (18 from intra-class and 36 from inter-
class analyses). We then count the number of cases where
these p-values exceed 0.05, indicating no statistically sig-
nificant difference. Overall, as shown in Tab. 6 and Tab. 7,
TopoCellGen achieves a greater number of radii with no
significant difference is observed, compared to other meth-
ods. It most accurately produces both intra-class clustering
and inter-class interactions, demonstrating the closest align-
ment with real data across the evaluated radii.

Method BRCA-M2C
Lym. – Lym. Epi. – Epi. Stro. – Stro. Total

ADM 0/6 0/6 2/6 2/18
TMCCG 2/6 1/6 2/6 5/18

Spatial Diffusion 1/6 3/6 2/6 6/18
TopoCellGen 3/6 5/6 4/6 12/18

Table 6. Number of radii with no statistically significant difference
(p > 0.05) for intra-class spatial clustering.

Method BRCA-M2C
Lym. – Epi. Lym. – Stro. Epi. – Lym. Epi. – Stro. Stro. – Lym. Stro. – Epi. Total

ADM 1/6 3/6 2/6 1/6 1/6 2/6 10/36
TMCCG 3/6 2/6 3/6 4/6 3/6 2/6 17/36

Spatial Diffusion 3/6 4/6 2/6 3/6 1/6 2/6 15/36
TopoCellGen 4/6 3/6 4/6 5/6 3/6 5/6 24/36

Table 7. Number of radii with no statistically significant difference
(p > 0.05) for inter-class spatial interactions.

16. Computational Costs and Scalability
Currently, our model is trained on a single NVIDIA A6000
GPU with 48 GB of memory for approximately 360K steps,
using a batch size of 5 at 256 × 256 resolution within 200
hours. The experiments can also be seamlessly scaled with
data parallel training.

17. Limitations
Our proposed TopoCellGen will fail in some cases. First,
the model is limited by its dependence on the cell types
present in the training data, preventing it from generat-
ing layouts containing unseen cell types. Additionally, the
model currently generates cell layouts in 256×256 patches,
which constrains its application to small-scale regions.


