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In this supplementary material, we provide additional
details and experimental results. First, we outline the frame-
work details of URWKV in Section 1. Next, Section 2 of-
fers descriptions of the datasets used and the training set-
tings. In Section 3, we present further ablation studies to
analyze the model from different perspectives. Section 4
provides more qualitative examples to illustrate the model’s
performance. Section 5 also evaluates the efficiency of
models with different architecture. Finally, in Section 6, we
discuss the limitations of the URWKV model and outline
potential directions for future work.

1. Framework Details
The pipeline of our URWKV is outlined in the main paper.
Here, we provide a more detailed description of the process
for handling the input degraded image.

Given an input image I ∈ R3×H×W , we first use an
input projection layer to extract shallow features Iin ∈
RC×H×W . These shallow features then pass through three
encoder stages and three decoder stages, with an output pro-
jection layer generating the residual image R ∈ R3×H×W .
Between the encoder and decoder stages, the state-aware se-
lective fusion (SSF) module selectively fuses the contextual
information from multiple encoder states into the decoder,
by perceiving the states of the encoder stages. Ultimately,
the output restored image can be expressed as I ′ = I +R.

Both the input and output projection layers consist of a
3 × 3 convolutional layer. In the encoder, each stage con-
sists of N1 URWKV blocks followed by a down-sampling
layer, while each stage in the decoder contains N2 URWKV
blocks and an up-sampling layer. The down-sampling layer
first doubles the number of channels through a 3 × 3 con-
volution, then halves the spatial resolution using bilinear
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down-sampling. In contrast, the up-sampling layer reduces
the channel dimension by half via a 3 × 3 convolution and
then doubles the spatial resolution using bilinear interpo-
lation. Notably, the down-sampling operation in the first
encoder stage and the up-sampling operation in the first de-
coder stage do not alter the number of channels.

2. Datasets and Training Details

Our URWKV model employs the same multi-scale progres-
sive training strategy [1, 2] and the unified loss function [3]
across all datasets. Following Retinexformer [1], all image
pairs in the SID, SMID, SDSD-indoor, and SDSD-outdoor
datasets are resized to 960 × 512. Furthermore, the RAW
data are converted into low-light and normal-light RGB im-
age pairs. A detailed description of each dataset utilized for
comparison is provided below.

LOL. We evaluate models under both real-world (LOL-
v2-real [4]) and synthetic (LOL-v2-syn [4]) low-light con-
ditions, which pose a fundamental challenge in restoring
both brightness and contrast while mitigating noise. The
LOL-v2-real subset comprises 789 paired low-light and
high-light images, captured in real-world scenarios by vary-
ing camera settings such as ISO and exposure time, with a
resolution of 400 × 600. Among these, 689 pairs are des-
ignated for training, while 100 pairs are reserved for test-
ing. In contrast, the LOL-v2-syn subset synthesizes low-
light images from RAW data by modeling the illumination
distribution of real low-light scenes. This subset features a
resolution of 384 × 384 and includes 900 pairs for training
and 100 pairs for testing.

SID and SMID. The SID [5] and SMID [5] datasets fea-
ture short- and long-exposure images with significant noise.
Specifically, the SID subset consists of 2,697 paired short-
and long-exposure images captured using the Sony α7S II
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camera. It encompasses both indoor and outdoor scenes un-
der extremely low-light conditions, with illuminance levels
ranging from 0.03 to 0.3 lux indoors and 0.2 to 5 lux out-
doors. The dataset is partitioned into 2,099 pairs for train-
ing and 598 pairs for testing. In addition, the SMID sub-
set comprises 20,809 paired short- and long-exposure im-
ages in RAW format. The dataset is partitioned into 15,763
pairs for training, with the remaining 5,046 pairs reserved
for testing.

SDSD. The static version of the SDSD dataset, used in
this work, is captured with a Canon EOS 6D Mark II cam-
era equipped with an ND filter to regulate light exposure.
It comprises both indoor and outdoor subsets [6], charac-
terized by extremely low-brightness conditions. For SDSD-
indoor, 1,655 image pairs are used for training and 308 for
testing. For SDSD-outdoor, 2,650 image pairs are allocated
for training and 500 for testing.

FiveK. The MIT-Adobe FiveK dataset [7] challenges
models with the intricate task of color restoration in low-
light and underexposed images. It [7] consists of 5,000 im-
ages in diverse lighting conditions. Each image is manually
adjusted by five photographers (A-E). Following [1], we use
the adjustments made by Expert C as the ground truth. It is
split into 80% for training (4,500 pairs) and 20% for test-
ing (500 pairs), with all images processed in sRGB output
mode.

LOL-blur. The LOL-blur [8] dataset couples varying
degrees of low-light and motion blur, which has often been
underrepresented in other LLIE datasets. In particular, the
LOL-blur dataset [8] contains 12,000 image pairs, each con-
sisting of a low-blur and normal-sharp version. It is split
into 10,200 pairs for training and 1,800 pairs for testing,
with each image pair having a resolution of 1120× 640.

3. More Ablation Studies
In this section, we conduct additional ablation studies to
investigate the underlying design rationale and assess the
model’s scalability.

Additional analysis of LAN and SSF modules. LAN
and SSF modules constitute essential components of the
URWKV block. To gain a deeper understanding of their
roles and contributions to the overall model performance,
we conduct an ablation analysis on the SID and LOL-
blur datasets. The SID dataset, which includes severe
noise degradations in low-light conditions, and the LOL-
blur dataset, which features coupled blur degradations, pro-
vide valuable insights.

Taking the results on the SID dataset as an example, as
shown in Table 1a, the model without LAN and SSF per-
forms the worst in terms of PSNR and SSIM. Notably, when
only the SSF module is used (Table 1b), the improvements
in PSNR and SSIM are limited. This may be due to the
extreme low-light conditions, which pose significant chal-

Table 1. Ablation study of LAN and SSF modules on SID and
LOL-blur datasets.

Models SID LOL-blur
# LAN SSF PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

(a) 21.75 0.658 24.92 0.844

(b) ✓ 21.95 0.659 26.64 0.879

(c) ✓ 22.19 0.661 25.95 0.873

(d) ✓ ✓ 23.11 0.673 27.27 0.890

Table 2. Impacts of EMA-based aggregation strategy on LOL-v2-
real dataset. NAN indicates an out-of-memory condition. T repre-
sents the restoration stage, and C denotes the number of channels.

Aggregation Strategy PSNR ↑ SSIM ↑ Complexity

Naive Attention [9] NAN NAN O(T ·N2)

Transposed Attention [10] 22.48 0.864 O(T · C2)

Naive Addition 21.99 0.858 O(1)

EMA (Ours) 23.11 0.874 O(1)

lenges for the model. In such conditions, the model lacks
tailored strategies for adaptive luminance adjustment. On
the other hand, as shown in Table 1c, the gain from using
only the LAN module is quite noticeable. Compared to the
model in Table 1a, there is an improvement of 0.44 dB in
PSNR and 0.003 in SSIM. This highlights that in complex
environments, luminance, as one of the primary causes of
other degradations, needs to be addressed specifically. Our
final model, which combines both LAN and SSF, achieves
a PSNR of 23.11 dB and an SSIM of 0.673, significantly
outperforming other models.

We also provide a visual example on the SID dataset for
analysis. As shown in the first row of Fig. 1, the model
without LAN exhibits noticeable blotchy artifacts, while the
model without SSF fails to effectively suppress noise, re-
sulting in a lack of smoothness. When both LAN and SSF
are combined, our URWKV model achieves smoother noise
suppression and produces sharper edge reconstruction. Ad-
ditionally, our URWKV model not only demonstrates more
accurate luminance enhancement (as shown in the second
row of Fig. 1), but also delivers more precise color restora-
tion (as shown in the third row of Fig. 1).

Aggregation strategy in SQ-Shift. The SQ-Shift em-
ploys an exponential moving average (EMA)-based ap-
proach to aggregate multiple intra-stage states. To evaluate
its effectiveness, we conduct an ablation study by replac-
ing EMA with alternative strategies, including additive (lin-
ear) aggregation and transformer-based (non-linear) aggre-
gation. For the transformer-based approach, we explore two
attention mechanisms: naive attention [9] and transposed
attention [10]. The results presented in Table 2 highlight
the advantages of the EMA approach. While linear aggre-



Ground Truthw/o SSFw/o LAN URWKVw/o LAN and SSFInput

Figure 1. Visual analysis of LAN and SSF modules on the SID dataset. In particular, the second and third rows correspond to the luminance
histograms and RGB histograms of the respective images, respectively.
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Figure 2. Ablation study on the decay factor α in EMA. Experi-
ments are conducted on LOL-v2-real datatset.

gation is straightforward, it assigns equal weight to all past
states, potentially diluting the significance of recent states
that typically carry more relevant information. As shown in
Table 2, the additive aggregation strategy results in subopti-
mal performance, yielding a PSNR of 21.99 and an SSIM of
0.858, respectively. On the other hand, transformer-based
aggregation provides strong modeling capabilities but in-
curs substantial computational and memory overhead, mak-
ing it an inefficient choice for aggregating intra-stage states
in resource-constrained settings. In contrast, our model us-
ing EMA strikes an effective balance between efficiency
and performance by dynamically adjusting the contribu-
tion of past and recent states using a tunable decay fac-
tor. This computationally lightweight approach introduces
minimal overhead (linear complexity) while maintaining ro-
bustness, making it well-suited for the aggregation of intra-
stage states in SQ-Shift.

Decay factor α in EMA. The decay factor α in EMA
plays a pivotal role in regulating the integration of histor-
ical and current information within the model. For lower
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Figure 3. Ablation study on the number of states employed for
LAN. Experiments are conducted on LOL-v2-real datatset.

decay factors, the model’s ability to retain useful historical
information diminishes, resulting in weaker feature reten-
tion and a subsequent drop in performance. As shown in
Fig. 2, when α = 0.3 and α = 0.4, the model yields subop-
timal PSNR values of 21.61 dB and 21.87 dB, respectively.
Conversely, higher decay factors lead to a decline in per-
formance as the model becomes overly reliant on past in-
formation. As demonstrated in Fig. 2, the model achieves
PSNR values of 21.96 dB and 21.48 dB for α = 0.6 and
α = 0.7, respectively, both of which are suboptimal. These
results reflect the negative impact of excessive historical in-
fluence. In contrast, the optimal performance is observed at
α = 0.5, which strikes an effective balance between histor-
ical context and current adaptability.

Number of states used for LAN. The LAN leverages
inter-stage multiple states to dynamically adjust luminance,
using an extended historical context across both encoder
and decoder stages. To assess the number of states used for
LAN on model performance, we conduct an ablation study
using configurations with 1, 2, 3, and 4 states, as well as



and an “All” setting that integrates all available states. As
illustrated in Fig. 3, increasing the number of states gener-
ally enhances performance by providing a richer historical
context for luminance adjustment. For example, the PSNR
improves from 22.21 dB with a single state to 22.85 dB with
two states, highlighting the benefit of leveraging additional
inter-stage information. However, as more states are added
(e.g., three and four states), the performance gains begin to
plateau, with only marginal improvements observed. This
diminishing return may result from the inclusion of redun-
dant or less relevant information from earlier stages, which
can introduce noise or minor perturbations that disrupt the
adjustment process. Notably, the “All” setting, which inte-
grates the complete historical context, achieves the best re-
sults with a PSNR of 23.11 dB and an SSIM of 0.874. This
finding indicates that, when sufficient and relevant historical
information is fully utilized, the model can achieve a com-
prehensive understanding of luminance variations across
stages.

Going deeper and wider. To enhance the capacity of
our URWKV model, we explore increasing both the block
number and the channel size, making the model deeper
and wider, respectively. As shown in Table 3, our model
demonstrates significant scalability, achieving substantial
improvements in both configurations. For example, when
the number of blocks in the encoder and decoder are in-
creased from N1 = 3, N2 = 2 (Table 3a) to N1 = 4,
N2 = 3 (Table 3b), the PSNR increases by 0.38 dB (from
27.27 dB to 27.65 dB), and SSIM improves by 0.002 (from
0.890 to 0.892). On the other hand, when the channel
size is expanded from 32 (Table 3a) to 48 (Table 3c), the
model exhibits a substantial performance boost with PSNR
increasing from 27.27 dB to 27.37 dB and SSIM improving
from 0.890 to 0.896. It is worth noting that even with our
largest model (Table 3c), which has a parameter count com-
parable to the state-of-the-art models such as PDHAT [11],
it achieves significant advantages with substantially fewer
FLOPs.

4. More Qualitative Results
In this section, we present additional visual examples for
various state-of-the-art models.

LOL. Visual comparisons on the LOL-v2-real dataset
are shown in Fig. 4a. As illustrated in the first and sec-
ond rows, our method excels in preserving details under
scenes with significant brightness contrast, without intro-
ducing color shifts or oversaturated highlights in the illumi-
nated areas. In contrast, other methods, such as SNR-Net
[12], generate noticeable artifacts, while Retinexformer [1]
produces large black blotches in the lighted regions. Addi-
tionally, Fig. 4b presents visual comparisons on the LOL-
v2-syn dataset. Our method demonstrates outstanding detail
preservation and color restoration in areas with pronounced

Table 3. Exploring deeper and wider URWKV models with LOL-
blur dataset.

# C N1 N2 PSNR ↑ SSIM ↑ Params FLOPs

(a) 32 3 2 27.27 0.890 2.25M 18.34G

(b) 32 4 3 27.65 0.892 2.83M 22.33G

(c) 48 3 2 27.37 0.896 5.05M 40.92G

(d) 48 4 3 28.11 0.903 6.36M 49.86G

LEDNet [8] - - - 26.06 0.846 7.41M 38.57G

PDHAT [11] - - - 26.71 0.879 7.83M 208.19G

MIRNet [13] - - - 23.99 0.774 31.76M 785.00G

Restormer [2] - - - 26.38 0.860 26.11M 140.99G

MambaIR [14] - - - 26.28 0.848 4.30M 60.66G

brightness contrasts (e.g., the first and second rows). More-
over, it effectively avoids artifact generation, as evidenced
by two clear examples in the third and fourth rows.

SID and SMID. Enhancing brightness while simultane-
ously denoising poses a significant challenge for models on
the SID and SMID datasets. Visual comparisons for these
datasets are provided in Fig. 5 and Fig. 6, respectively. Our
model demonstrates robust denoising capabilities while en-
suring effective brightness enhancement and accurate color
restoration, producing clean and sharp restored images. In
contrast, other state-of-the-art models often retain consider-
able degradation patterns. For example, as shown in the first
row of Fig. 5, the enhancement results from KinD [17] still
exhibit a significant amount of residual noise, while FourL-
LIE [16] introduces noticeable color distortions. Similarly,
in regions with stark brightness contrasts (e.g., the first-row
example in Fig. 6), models such as MIRNet [13] and SNR-
Net [12] fail to recover clear edges and instead produce
noisy outputs.

SDSD. Visual examples on the SDSD-indoor and SDSD-
outdoor datasets are presented in Fig. 7 and Fig. 8, respec-
tively. As shown in the first row of Fig. 7, the LOL-deblur
models, LEDNet [8] and PDHAT [11], introduce severe ar-
tifacts on white wall surfaces. Similarly, LLFormer [10]
struggles with detail reconstruction and color restoration,
as demonstrated in the second and third rows of Fig. 7. Fur-
thermore, as illustrated in the first-row example of Fig. 8,
SNR-Net [12] introduces noticeable block artifacts, a com-
mon drawback of transformer-based models when attempt-
ing to establish long-range relationships. In contrast, our
URWKV model excels in these scenarios, delivering supe-
rior brightness enhancement while preserving details and
effectively avoiding introducing artifact.

FiveK. Fig. 9 provides several visual examples from the
FiveK dataset. On this dataset, SNR-Net [12] introduces
prominent block artifacts, as seen in the first-row example.
Retinexformer [1], on the other hand, suffers from severe
color distortion, particularly in the sixth and seventh rows.
The unified model MIRNet [13] exhibits suboptimal per-
formance in detail reconstruction, as demonstrated in the



second-row example. Additionally, it leaves noticeable ar-
tifacts when restoring regions such as the sailboat, sky, or
lake, as evidenced in the third, fifth, and sixth rows. In con-
trast, our model consistently delivers superior restoration
across various scenes, showcasing exceptional aesthetic en-
hancement and structural reconstruction capabilities.

LOL-blur. The LOL-blur dataset introduces additional
challenges by coupling complex blur degradation with low-
light conditions, posing significant difficulties for all mod-
els. Several visual comparisons are presented in Fig. 10.
Retinexformer [1], as a state-of-the-art LLIE model, lacks
an explicit decoupling strategy. While it achieves some de-
gree of brightness enhancement, its ability to restore blurred
regions is minimal. Similar limitations can also be observed
in unified models, such as MIRNet [13] and MambaIR [14].
In contrast, our model outperforms even LLIE-deblur mod-
els like LEDNet [8] in this challenging scenario. As shown
in the first-row example, our model produces sharper edge
restoration and achieves brightness enhancement that more
closely matches the ground truth.

5. Efficiency Analysis
Smaller models (such as FourLLIE and Retinexformer)
generally struggle with complex degradations, especially in
challenging low-light scenarios coupled with heavy noise
[5] or motion blur [8] (as visual examples depicted in
Fig. 5 and Fig. 10) . Although larger models like MIR-
Net and MambaIR deliver more balanced performance,
their extensive parameter counts and computational de-
mands (31.76M/785.00G and 4.30M/60.66G) make them
less suited for real-time deployment. In contrast, URWKV
provides a robust solution with fewer parameters and lower
FLOPs (2.25M/18.34G).

Furthermore, we compare the average inference speed of
URWKV and MambaIR on the LOL-v2-real dataset, which
are built on the advanced RWKV and Mamba architectures,
respectively. URWKV achieves an inference time of 0.147s,
while MambaIR takes 0.378s. This further highlights the
ability of our approach to strike an optimal balance between
performance and efficiency.

6. Limitation and Future Direction
In this work, we have tackled the challenges posed by
dynamic coupled degradation in existing models and pro-
posed a tailored solution from multi-state perspective. The
proposed URWKV model demonstrates exceptional perfor-
mance across eight datasets, with significantly fewer param-
eters and reduced computational cost. However, there re-
mains potential for further improvement in restoring more
extreme coupled degradations, such as severe noise and in-
tense blur.

From an architectural standpoint, the potential of UR-

WKV has yet to be fully explored. For example, integrating
URWKV with Transformer-based architectures could en-
hance the model’s ability to capture both local and global re-
lationships across spatial and state domains, ultimately im-
proving its performance in more complex degradation sce-
narios.
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Figure 4. Visual examples on LOL-v2-real and LOL-v2-syn datasets, comparing RetinexNet [15], SNR-Net [12], FourLLIE [16], Retinex-
former [1], and our URWKV.
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Figure 5. Visual examples on SID [5] among KinD [17], SNR-Net [12], FourLLIE [16], LLFormer [10], and our URWKV.
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Figure 6. Visual examples on SMID [5] among MIRNet [13], SNR-Net [12], FourLLIE [16], LLFormer [10], and our URWKV.
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Figure 7. Visual examples on SDSD-indoor [6] among LLFormer [10], RetinexMamba [18], LEDNet [8], PDHAT [11], and our URWKV.
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Figure 8. Visual examples on SDSD-outdoor [6] among FourLLIE [16], SNR-Net [12], LLFormer [10], LEDNet [8], and our URWKV.
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Figure 9. Visual examples on FiveK [6] among SNR-Net [12], LEDNet [8], MIRNet [13], Retinexformer [1], and our URWKV.
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Figure 10. Visual examples on LOL-blur [8] among Retinexformer [1], LEDNet [8], MIRNet [13], MambaIR [14], and our URWKV.
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