
VLMs-Guided Representation Distillation for Efficient Vision-Based
Reinforcement Learning

Supplementary Material

7. Environment details
In VRL, the agent’s input is an RGB visual image. To en-
sure a fair comparison, the camera settings in Carla for all
experiments are provided in Tab. 3. Since weather condi-
tions can influence the quality of the visual RGB input, we
standardized the weather settings across all experiments us-
ing the parameters listed in Tab. 4.

Our objective is to travel as far as possible within 500
steps without colliding [22, 23, 51, 57]. Consequently, the
reward function for all our experiments is defined as fol-
lows:

rt = λ1·
v⊤agentulane

Tick
−λ2·collision−λ3·brake−λ4·|steer|.

(14)
Here, vagent is the agent’s velocity vector. ulane is

the unit vector representing the direction of the lane at the
agent’s current position and orientation. Tick is the sim-
ulation frequency (in Hz), which is equal to the capture
frequency of the RGB camera. The coefficients λ1 = 1,
λ2 = 0.1, λ3 = 10−3, and λ4 = 0.1 are used to balance
these components. The first term in the reward function mo-
tivates the agent to stay on the lane and travel as far as pos-
sible. The second, third, and fourth terms impose penalties
for collisions, excessive braking, and overly sharp steering,
respectively.

8. Additional implementation details
8.1. Network architecture

We provide the detailed network architecture of the visual
encoder, policy decoder, and SSL module in our compact
agent in Fig. 10, with the corresponding input and output
symbols annotated in the figure.

In Fig. 10a, it is clear that our visual encoder is signifi-
cantly smaller compared to the ResNet series [56]. We be-
gin by applying four 2D convolutional layers (referred to
as Conv) with ReLU activation to encode the original vi-
sual input st into a feature map ft. As depicted in the fig-
ure, each Conv operation is specified with three standard
parameters: kernel size, stride, and padding. The resulting
feature map ft has dimensions of (256, 6, 6). Next, ft is
flattened (Flatten) and transformed into a 512-dimensional
feature vector zt through a fully connected linear layer (Lin-
ear) followed by a LayerNorm operation.

Fig. 10b illustrates the policy decoder of the agent, con-
sisting of three Linear layers and two ReLU activation func-
tions. As shown in Fig. 10c, the two action-conditioned

Fla�en

Conv 5x5, 2, 0
ReLU

Conv 3x3, 2, 0
ReLU

Conv 3x3, 2, 0
ReLU

Conv 3x3, 2, 0
ReLU

Linear(9216, 512)
LayerNorm

(a) Visual encoder.

Linear(512, 512)
ReLU

Linear(512, 512)

Linear(512, 2)

ReLU

(b) Policy decoder.

Linear(514, 512)

Linear(512, 512)

LayerNorm
ReLU

Linear(514, 512)

Linear(512, 1)

LayerNorm
ReLU

(c) SSL auxiliary tasks.

Figure 10. Detailed network architecture.

auxiliary networks, denoted as Φtrans and Φrwd, take the
feature vector zt and the action at as inputs. Specifically,
Φtrans predicts the next-step feature vector ẑt+1, while
Φrwd predicts the reward r̂t.

8.2. Hyperparameter settings

A full list of hyperparameters in DGC is provided in Tab. 5.

8.3. Details of PFT and RFT

In Sec. 5.2, we perform a comprehensive comparison with
various state-of-the-art (SOTA) methods, offering a detailed
analysis of VLM-based approaches. First, we adapt the
prompts defined in Fig. 4 to align with the Executor method,
enabling the VLM to directly output precise low-level con-
trol values. These modified prompts and the corresponding
CoT examples are detailed in Fig. 11.

The CoT results indicate that VLMs can effectively iden-
tify the relationships between the agent, surrounding ob-
jects, and the task, allowing for accurate determination of
general action values. However, at a fine-grained level, the
actions lack precision and differentiation. To address this,
the PFT method utilizes these action values as supervisory
signals, enabling the agent to rapidly acquire the VLM’s
decision-making capabilities. Nonetheless, further refine-
ment through VRL remains essential to achieve more pre-
cise and nuanced decision-making.

Attributes Value Description

Image size [128, 128] Width and height of the image in pixels.
FOV 60 Horizontal field of view (FOV) of the camera.
Tick 20 The RGB camera’s capture frequency in hertz.
ISO 100 The RGB camera’s sensitivity to light.

Exposure brightness 10, 12
The minimum and maximum brightness adjustments of the RGB camera
in response to changing lighting conditions.

Blur intensity 0.45 The strength of motion blur effect.
Shutter speed 200 The camera shutter speed in seconds.
Gamma 2.2 The gamma correction applied to the RGB camera’s output.
Lens flare 0.1 The intensity of lens flare effects in the camera view.

Table 3. Settings of the RGB camera.

Attributes Value Description

Cloudiness 20 The percentage of sky covered by clouds, ranging from 0 to 100.
Precipitation 0 The intensity of rain, from 0 (no rain) to 100 (heavy rain).
Precipitation deposits 0 The creation of puddles on the surface.
Wind intensity 0 No wind when the value is 0, with 100 representing strong wind.
Fog density 20 The concentration or thickness of fog, ranging from 0 to 100.
Fog distance 0 The starting distance of the fog.
Wetness 0 The presence of moisture on surfaces, simulating wet conditions.
Sun azimuth angle 0 The azimuth angle of the sun, ranging from 0 to 360 degrees.
Sun altitude angle 10 The altitude angle of the sun, ranging from -90 to 90 degrees.

Table 4. Settings of the Carla weather.

Hyperparameter Value

RGB frame dimensions 128×128×3
Action repeat 1
Frame skip 1
Frame stack 3
Initial sampling steps 1,000
Maximum steps per rollout 500
Total training steps 100,000
Evaluation episodes 20
Replay buffer size 10,000
Initial α (SAC) 0.01
Optimizer (Actor, Critic, α) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (Visual encoder, Auxiliary tasks) Adam
Batch size 32
Learning rate (Actor, Critic, α) 10−4

Learning rate (Visual encoder, Auxiliary tasks) 10−4

VLMs-guided supervision update frequency 5
Transition and reward auxiliary task update frequency 1
Actor update frequency 2
Critic target update frequency 2

Table 5. A full hyperparameter list used in DGC.

In the RFT method, the agent’s visual encoder is re-
placed with a CLIP pre-trained image encoder. While the
pre-trained parameters are directly loaded, they are fully
fine-tuned during the VRL training process. This approach
harnesses the image understanding capabilities of the pre-
trained VLM but still requires fine-tuning through environ-
mental interactions to optimize performance.

9. Additional experiments
9.1. Model statistics

Tab. 6 provides a comparison of parameter sizes and infer-
ence speeds between VLM models for reasoning and re-
ferring tasks, SSL auxiliary networks, and our proposed
model. The inference times were measured on an Nvidia
A100. Since ChatGPT-4o is not open-sourced, its inference
time is estimated based on the duration between API re-
quest submission and data receipt. It is clear that VLMs
have significantly larger model sizes and longer inference
times compared to our agent, with the reasoning VLM being
the most complex, followed by the referring VLM. Addi-
tionally, the transition and reward predictive heads, serving
as auxiliary tasks, are relatively small in size and can effi-
ciently assist the agent in extracting task-relevant features.

Models
Params

(M)↓
Inference

Time (ms) ↓
Qwen-VL-Chat 9,657 11,365

Qwen2-VL-Chat (7B) 8,291 8,912
ChatGPT-4o-mini N/A 5,099

CLIP (ViT-B/32) 151 64
CRIS 147 130

Transition head (Φtrans) 0.527 1.108
Reward head (Φrwd) 0.265 0.429

DGC (Ours) 6 1.502

Table 6. Model statistics.

9.2. Effect of prompts

LLMs (and more recently, VLMs) are highly sensitive to
prompt quality [5]. To showcase the effectiveness of our
predefined prompts, we present several intuitive examples.
Our primary objective is to verify that the CoT reason-
ing process aligns with real-world Carla scenarios and con-
forms to human common-sense logic. A detailed step-by-
step analysis for Figs. 4b and 11b is presented below.
• Step 1 demonstrates that the VLM outputs thoroughly

capture all aspects of the scenario while maintaining close
alignment with real-world contexts. Notably, the VLM
exhibits a precise understanding of the objects’ existence

as well as their spatial relationships. For example, in the
second case shown in Fig. 11b, the ego-vehicle is posi-
tioned very close to the white SUV ahead, with no steer-
ing adjustments and traveling at high speed. This corre-
sponds closely to the description provided by the input
image and the specified actions.

• Step 2 demonstrates that the VLM can anticipate multi-
ple possible future outcomes based on the given input.
For example, in the second case shown in Fig. 4b, two
scenarios are depicted: one where the pedestrian success-
fully crosses the road, and another where the pedestrian
hesitates and comes to a stop. Both scenarios are fre-
quently observed in real-life situations. However, while
the evaluation of potential collision risks in future sce-
narios is generally accurate, a limitation is evident in the
first example of Fig. 11b, where the potential risk involv-
ing the ego-vehicle and the vehicle in the right lane is not
identified, despite this vehicle being observed in Step 1.

• In Step 3, the ego-vehicle focuses on setting priorities,
such as maintaining a safe distance, keeping a consis-
tent speed, preparing to brake, or adjusting its position
to the right. This step aims to clarify the interactions be-
tween the traffic participants and the ego-vehicle within
the given scenario. For example, in the second example
of Fig. 11b, the ego-vehicle plans to decelerate and main-
tain constant attention on the SUV ahead.

• In Step 4, based on the analysis from the previous three
steps, the corresponding output results are naturally de-
rived and conform to the predefined format. Specifically,
Fig. 4b generates the semantic categories of key regions,
while Fig. 11b produces executable low-level action val-
ues, both aligning with the output requirements specified
by the prompts.

10. Future direction
VRL is a key approach in artificial intelligence that enables
agents to learn and refine decision-making skills by inter-
acting with their physical environments. These interactions
shape how agents perceive and process their surroundings,
directly influencing their behavior and decisions. Future re-
search will focus on measuring how latent representations
evolve over time and testing their generalization across var-
ious scenarios. Additionally, a deeper understanding of the
physical properties of the 3D world is seen as essential for
improving the cognitive and decision-making abilities of
VRL systems. To achieve this, efforts are being directed to-
ward combining agents’ physical trajectory data with visual
information into a unified representation, enhancing predic-
tive planning and enabling more effective decisions. More-
over, clarifying the capability boundaries of both VRL and
VLMs is critical, as it provides valuable insights into how
to design effective strategies for integrating the two, lever-
aging their complementary strengths.

[Task Defini�on Prompt]
You will act as an autopilot expert in CARLA. You will be
provided with a sequence of three front-camera
images captured by the ego-vehicle, along with the
corresponding historical ac�ons. The ac�on data
consists of two elements: the first is steering, ranging
from -1 to 1, where values less than 0 indicate a le�
turn, and values greater than 0 indicate a right turn.
The second element relates to thro�le and braking,
where posi�ve values represent thro�le and nega�ve
values indicate braking. Your output should follow the
structured reasoning outlined in the Chain-of-Thoughts
prompt.

[Common Sense Prompt]
Avoid collisions with other traffic par�cipants, such as
vehicles or pedestrians.
Be cau�ous of poten�al hazards.
Follow all traffic rules.
Proceed only when there are no dangers.

[Chain-of-Thought Prompt]
You should analyze the scenario and provide a
step-by-step response according to the following guid-
ance:
1. Describe the Environment: Start by describing the

surrounding environment of the ego-vehicle based
on the given images.

2. Anticipate Future Outcomes: Consider what future
scenarios might arise given the current surround-
ings and historical ac�ons.

3. Set Priorities: Determine what the ego-vehicle
should priori�ze in the near term based on its
observa�ons.

4. Identify Key Action: Based on the analysis, specify
one critical action or focus area for the current
observation. Present this in the format: --[throttle,
steering]--.

(a) The predefined prompts for Executor.

Q:

 ac�ons: [-0.06, 0.3], [-0.08, 0.34]

Q:

 ac�ons: [0, 0.9], [0, 0.85]

Q: [Task Defini�on Prompt] ... [Common Sense Prompt] ... [Chain-of-Thought Prompt] ...

A: Certainly! Let's analyze the given scenario step-by-step.

1. Describe the Environment:
Image 1: The ego-vehicle is on a mul�-lane highway at night. There is moderate traffic with vehicles in adjacent
lanes. The road is straight with clear lane markings, and a rock face is visible on the right.
Image 2: The scene remains consistent with the first image. The vehicle is maintaining its posi�on rela�ve to the
other cars.
Image 3: No significant changes; the vehicle con�nues along the straight highway with the same traffic and
environment.
Historical Ac�ons:
 · Steering (0.3, 0.34): Slight right adjustments, indica�ng minor lane centering or alignment.
 · Thro�le/Braking (-0.06, -0.08): Light braking, sugges�ng a decrease in speed to maintain safe distance or adjust
to traffic flow.

2. An�cipate Future Outcomes:
The vehicle is likely to con�nue on the straight path, maintaining its lane.
Traffic condi�ons appear stable, but vigilance is needed for any sudden changes.
The slight braking ac�on suggests an ongoing adjustment to traffic speed.

3. Set Priori�es:
Maintain Lane Posi�on: Ensure the vehicle stays centered in its lane while adjus�ng to traffic.
Monitor Traffic: Keep an eye on the vehicles ahead and in adjacent lanes for any sudden movements.
Adjust Speed: Con�nue to adjust speed as necessary to maintain a safe following distance.

4. Iden�fy Key Ac�on:
To ensure safety and smooth opera�on, the ego-vehicle should maintain its current lane posi�on and adjust speed
as needed.
Cri�cal Ac�on: --[-0.1, 0.3]--
Thro�le/Braking (-0.1): Apply slight braking to maintain a safe distance from the vehicle ahead.
Steering (0.3): Con�nue slight right steering to remain centered in the lane.

A:

1. Describe the Environment:
Image 1: The ego-vehicle is on a mul�-lane highway at night. There is moderate traffic with a white SUV directly
ahead and other vehicles in adjacent lanes. The road is straight with clear lane markings.
Image 2: The ego-vehicle is closer to the white SUV. Traffic remains consistent, and there are no visible obstacles
or pedestrians. The road con�nues straight.
Image 3: The ego-vehicle is very close to the white SUV, indica�ng a poten�al need to adjust speed to maintain a
safe distance.
Historical Ac�ons:
 · Steering (0, 0): The vehicle is maintaining a straight path with no steering adjustments.
 · Thro�le (0.9, 0.85): High thro�le values, sugges�ng the vehicle is accelera�ng or maintaining high speed.

2. An�cipate Future Outcomes:
The ego-vehicle is approaching the SUV ahead rapidly, which could lead to a collision if the distance is not adjusted.
Con�nua�on of high thro�le without braking will reduce the safe following distance further.
The road remains straight, so no immediate steering adjustments are necessary.

3. Set Priori�es:
Maintain Safe Distance: The primary focus should be on reducing speed to increase the distance from the SUV
ahead.
Monitor Traffic: Keep an eye on the behavior of the SUV and other vehicles for any sudden changes.
Prepare for Braking: Be ready to apply brakes if the SUV slows down or traffic condi�ons change.

4. Iden�fy Key Ac�on:
To ensure safety, the ego-vehicle should decrease thro�le and prepare to brake to maintain a safe following
distance.
Cri�cal Ac�on: --[-0.5, 0]--
Thro�le (-0.5): Apply braking to reduce speed and increase the distance from the vehicle ahead.
Steering (0): Maintain a straight path as no steering adjustment is currently needed.

A:

(b) Some typical CoT examples of Executor.

Figure 11. Illustration of the predefined prompts for VLM-based Executor with the corresponding CoT reasoning examples.

	. Environment details
	. Additional implementation details
	. Network architecture
	. Hyperparameter settings
	. Details of PFT and RFT

	. Additional experiments
	. Model statistics
	. Effect of prompts

	. Future direction

