
VideoGigaGAN: Towards Detail-rich Video Super-Resolution
Supplementary Material

This supplementary document includes additional quantitative results, our network architecture, and details on implemen-
tations and training.

We encourage readers to refer to our project website (https://videogigagan.github.io/) for more visual
results.

A. Network architecture
A.1. GigaGAN upsampler
We show the configurationss of our GigaGAN upsampler in Table 1. For the low-pass filters, we use a kernel of 1

16 [1, 4, 6, 4, 1]
before the downsampling operations.

A.2. Flow-guided feature propagation module
We follow the architecture in BasicVSR++ [3]. We use SPyNet [22] as our flow estimator to reduce memory cost. For the
feature extraction, we use 5 residual blocks. The number of residual blocks for propagation is set to 7. The kernel size of the
deformable convolutional netowrk (DCN) is 3. We encourage readers to refer to BasicVSR++ [3] for more details.

B. Training and evaluation details

Datasets. Following previous works [2, 4], we use REDS [21] and Vimeo-90K [30] for training purpose. For REDS, we
use clips 000, 011, 015, 020 of the training set for testing, and clips 000, 001, 006, 017 are used for validation, the rest of the
clips are used for training. The ground truth has a resolution of 1280 × 720. For Vimeo-90K, in addition to its official test
set Vimeo-90K-T, we use UDM10 [32] and Vid4 [17] for testing purpose. The ground truth has a resolution of 448× 256.
Degradation. We use MMagic’s [19] script for degradations - Bicubic (BI) and Blur Downsampling (BD). For BD, the
ground truth is blurred by a Gaussian filter with σ = 1.6, followed by a 4× subsampling.
Training settings. We use Adam optimizer [12] for training with a fixed learning rate of 5 × 10−5. During training, we
randomly crop a 64× 64 patch from each LR input frames at the same location. We use 10 frames of each video and a batch
size of 32 for training. The batch is distributed into 32 NVIDIA A100 GPUs. The total number of training iterations for each
model is 100, 000.
Test settings. During the testing, we use the full-frame of the videos. Particularly, for Vimeo-90K-T, we follow its tradition
and only evaluate PSNR, SSIM and LPIPS [33] on the center frame.
Metrics. We consider two aspects in our evaluation: per-frame quality and temporal consistency.

For per-frame quality, we use PSNR, SSIM, and LPIPS [33]. Except for REDS4, we evaluate PSNR and SSIM on
y-channel following previous works [2, 3, 18].

For temporal consistency, we use warping error Ewarp [13] and proposed referenced warping error Eref
warp. Please refer to

our main paper for the definition of Eref
warp. We use RAFT [26] as our flow estimator when computing temporal consistency.

C. Additional quantitative results and discussion

Reliance on LPIPS metric. Recent works [5, 10, 23–25] highlight that PSNR/SSIM metrics often favor blurry results.
Following generative VSR methods like StableVSR [24], we use LPIPS but acknowledge its limitations in capturing higher-
level structures [7]. To address this, we also evaluate FID [8] and DISTS [6]. Our model still shows superior perceptual
scores.
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Table 1. GigaGAN model configurations

z dimension 512
w dimension 512
Mapping network layers 4
Activation LeakyReLU
G channel base 32768
G channel max 512
G # of filters N for adaptive kernel selection [1, 1, 1, 1, 1, 2, 4, 8, 16, 16, 16, 16]
G spatial self-attention resolutions [8, 16]
G temporal attention resolutions [8, 16, 32, 64]
G attention depth [2, 2, 2, 1]
G temporal attention window size 1
G temporal convolution kernel size 3
G # synthesis block per resolution [4, 4, 4, 4, 4, 4, 3]
G # downsampling blocks 3
D channel base 32768
D channel max 512
D attention depth [2, 2, 1]
D attention resolutions [8, 16]

G model size 369M
D model size 179M

Table 2. Additional results on REDS4 [21] dataset.

Model LPIPS↓ FID↓ DISTS↓
EvTexture [9] 0.1684 101.9 0.065
StableVSR [24] 0.1934 96.2 0.045
RealESRGAN [28] 0.4509 98.2 1.750
OVSR [31] 0.1746 123.8 0.063
Ours 0.1582 95.0 0.041

Additional comparison. We additionally compare with a GAN-based model RealESRGAN [29] and OVSR [31] in Table 2.
Our model performs better.
RWE metric. We propose the Referenced Warping Error (RWE) in Eqn. (4) in the main paper. We apply it to the blind
video colorization task on the DAVIS dataset, comparing it with the Warping Error (WE) to demonstrate its robustness. We
evaluate two methods, DVP [15] and All-in-One deflicker [14], and report results in Table 3 and Figure 1. Similar trends
emerge: “all-black frames” score 0 WE but high RWE, while All-in-one deflicker achieves a WE lower than GT but favors
blurrier results.

Table 3. Additional results for the RWE metric.

Method RWE(×10−3) ↓ WE(×10−3) ↓
GT 0 3.416

All-black frames 5.416 0
DVP [15] 3.377 2.649
All-in-one deflicker [14] 4.589 1.595



DVP, sharper veins All-in-one deflicker

Figure 1. Visual comparison between DVP [15] and All-in-One deflicker [14]. Although the All-in-One deflicker shows lower WE, its
output is blurrier than DVP.

D. More visual results

Artifacts of adding LPIPS to training loss. We retrain BasicVSR++ [3] and RVRT [16] with additional perceptual loss and
report in Table 4. Training RVRT with LPIPS is unstable and diverges. We observe that training BasicVSR++ with LPIPS
produces severe checkerboard artifacts in all results (zoom in for details), as also observed in previous papers [20, 27]

Table 4. LPIPS loss. Adding LPIPS to the training loss improves performance on LPIPS, but it introduces lower PSNR/SSIM and makes
the training unstable.

Model LPIPS↓ PSNR↑
BasicVSR++ [3] 0.1786 32.39
RVRT [16] 0.1727 32.74

BasicVSR++ + LPIPS 0.1646 31.42
RVRT + LPIPS diverged diverged

VideoGigaGAN (ours) 0.1582 30.46

Figure 2. Adding LPIPS uncarefully may introduce checkerboard artifacts. We retrain BasicVSR++ [3] with an additional LPIPS
loss. It brings LPIPS metric down, but also introduces visual artifacts such as checkerboard effects. Zoom in for details.

StyleGAN3. StyleGAN3 (SG3) [11] is famous for its alias-free attribute. However, directly incorporating SG3 blocks
into GigaGAN degrades frame quality and introduces “swirly” artifacts [1] (Figure 3). Also, SG3 may not be tailored for
scaling-up purposes, as it removes modules like noise inputs and residual connections, which limits its high-frequency detail
delivery. Therefore, we end up with StyleGAN2’s blocks as in the original GigaGAN [10]. More studies on anti-aliasing
features in generative models are needed in the future.



Input with SG3 blocks GT

Figure 3. StyleGAN3. Directly introducing StyleGAN3 (SG3)’s blocks brings a quality drop.

Video results. We encourage readers to refer to our project website (https://videogigagan.github.io/) for
more visual results.

E. Limitations

(a) Long video (b) Small objects

Figure 4. Limitations. Our approach has some limitations. (a) When the video is long, the feature propagation becomes inaccurate, which
may introduce undesired artifacts like incorrect propagated patterns. (b) Our model cannot handle well small objects, e.g. small characters.

Our model encounters challenges when processing long videos (e.g., 200 frames or more). This difficulty arises from
misguided feature propagation caused by inaccurate optical flow in such extended video sequences. Additionally, our model
does not perform well in handling small objects, such as text and characters, as the information pertaining to these objects is
significantly lost in the LR video input. Examples of these failure cases are illustrated in Figure 4.
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