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1. More Training Details.
The segmentation head is composed of four simple 3 × 3
convolutional layers. Input images are processed through
a random augmentation strategy involving color jitter, ran-
dom scaling, and random flip. For the experiments con-
ducted on the VOC 2012 dataset, we set the batch size to 4.
The models are trained for 20, 000 iterations, with a warm-
up phase of 2, 000 iterations for the segmentation heads.
For the COCO dataset, the batch size is set to 8 and the
models are trained for 80, 000 iterations with 8, 000 itera-
tions warmed up for the segmentation head. The radius r,
as defined in Eq. (5), is initialized to 1 and progressively
expanded to cover the entire target region. The expansion
follows a cosine updating strategy applied between 10%
and 40% of the total training iterations. Following previ-
ous works [1–3], we also incorporate the Patch Token Con-
trast (PTC) loss [1] to ensure a fair comparison with existing
methods.

2. Effect of Hyper-parameters
In this section, we conduct experiments on the effects of
other hyper-parameters, including the binary mask thresh-
old τbin in Eq. 7, threshold β to obtain pseudo labels, max
iteration number T , the smoothing factor λp in Eq. 12 and
the loss weighting parameters λ1, λ2, λ3. All experiments
were conducted on the PASCAL VOC 2012 validation set
without applying CRF post-processing.

Effect on the binary mask threshold τbin. Tab. 1a ex-
plores the impact of the binarization threshold τbin, which
is used to convert masks from CRME into binary masks for
ROR. Experimental results show that τbin = 0.7 achieves
the optimal balance for this process.

Effect on the Threshold β. Tab. 1b reports the ef-
fect of the threshold β, which determines the boundary
between the foreground and background regions in CAM-
based pseudo-labels. The results show that setting β to 0.5
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provides the most reliable balance for pseudo-label genera-
tion.

Effect on the max iteration number T in Progressive
Mask Expansion and Combination. Tab. 1c summarizes
the different max iteration numbers for progressive mask
expansion in each class. Setting T = 5 achieves the best
performance by progressively refining and expanding high-
confidence regions for each class, which ensures compre-
hensive coverage of multi-instance objects within a single
class. Smaller T (e.g., 3) might miss less prominent in-
stances, while larger iteration numbers (e.g., 10) will lead
to redundant expansions, increasing the risk of background
interference or overlap between instances.

Effect on the Smoothing factor λp. Tab. 1d presents the
results of different smoothing factors λp, which are used
to update class prototypes to balance between the histor-
ical prototypes and the current class tokens. The setting
of λp = 0.99 achieves the best performance, compared to
other numbers.

Effect on the Loss weighting parameters. Tab. 1e, 1f
and 1g report the impact of the loss weighting parameters
λ1, λ2, and λ3, which balance the contributions of the con-
fidence loss Lconf , refined mask loss Lrefine, and prototype
alignment loss LCPE, respectively. The optimal settings are
λ1 = 2.0, λ2 = 1.0, and λ3 = 0.02, ensuring an effective
balance across all loss components for robust training.

Effect on the radius r. In Tab. 1h, fixed r = 5 keeps
the radius constant, w/o r disables radius constraints, and
Cosine r dynamically updates the radius using a cosine
schedule.Experimental results show that Cosine r r achieves
the best performance by progressively expanding the region
coverage while maintaining precision.

3. Additional Quantitative and Qualitative Re-
sults

Per-Class Segmentation Comparison. Tab. 2 illustrates
that our method achieves leading performance in 12 out
of 21 classes, outperforming previous SOTA WSSS ap-

1



proaches. Specifically, our method achieves the highest
performance with 67.8% to segment the sofa, which out-
performs the best SOTA DuPL by 4.4%. In addition, we
achieve the highest mIoU of 75.5%, compared to all SOTA
methods. The improvement reflects the effectiveness of
our Progressive Confidence Region Expansion framework
in generating precise segmentation masks, which mitigates
the over-expansion issue.

Per-Class OA Rate Comparison. Fig. 1 compares
the Over-Activation (OA) rates for each class between our
method and DuPL [2] on the PASCAL VOC 2012 valida-
tion set. We observe that our method consistently reduces
the OA rate across most classes. These results highlight the
effectiveness of our method in refining segmentation masks
and preventing the unintended spread of high activation val-
ues to background regions.

CAM Visualization Comparison on MS COCO. Fig. 2
compares the Class Activation Maps (CAMs) generated by
ToCo [1], DuPL [2], and our method on the MS COCO
dataset. The visualizations demonstrate that our method
produces more accurate and focused CAMs, effectively lo-
calizing target objects while reducing over-expansion into
irrelevant background regions.

More Segmentation Visualization Results. Fig. 3
and 4 showcase segmentation results on PASCAL VOC
2012 and MS COCO, respectively. Our method achieves
more accurate and complete segmentation compared to
ToCo [1] and DuPL [2].
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τbin CAM Seg.

0.8 75.8 73.4
0.7 76.3 73.8
0.6 75.7 73.6
0.5 75.3 73.1

(a) Binarization thresholds.

β CAM Seg.

0.60 74.3 72.9
0.55 75.1 73.6
0.5 76.3 73.8
0.45 75.2 73.4

(b) Background thresholds.

T CAM Seg.

10 75.4 72.8
5 76.3 73.8
3 75.8 73.8
1 75.0 73.4

(c) Iterations of PMEC.

λp CAM Seg.

0.999 75.0 72.6
0.99 76.3 73.8
0.9 75.2 73.2
0.5 75.3 73.3

(d) Smoothing factor in CPE.

λ1 CAM Seg.

2.5 75.9 73.6
1.5 75.3 73.3
1.0 76.3 73.8
0.5 75.7 73.2

(e) Loss weight of Lconf .

λ2 CAM Seg.

3.0 76.1 73.4
2.0 76.3 73.8
1.0 75.6 73.1
0.5 75.7 73.4

(f) Loss weight of Lrefine.

λ3 CAM Seg.

1.0 74.8 71.8
0.1 75.0 73.1
0.02 76.3 73.8

0.005 74.5 73.0

(g) Loss weight of LCPE.

r setting CAM Seg.

w/o r 75.0 72.6

Fixed r = 5 75.3 73.1

Cosine r 76.3 73.8

(h) Radius r setting.

Table 1. Ablation study of hyper-parameters.
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1Stage [4] 88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.5 64.3 62.7
AFA [3] 89.9 79.5 31.2 80.7 67.2 61.9 81.4 65.4 82.3 28.7 83.4 41.6 82.2 75.9 70.2 69.4 53.0 85.9 44.1 64.2 50.9 66.0
ToCo [1] 91.1 80.6 48.7 68.6 45.4 79.6 87.4 83.3 89.9 35.8 84.7 60.5 83.7 83.2 76.8 83.0 56.6 87.9 43.5 60.5 63.1 71.1
DuPL [2] 91.8 77.8 47.1 81.7 58.9 78.6 88.8 77.6 91.9 38.2 91.5 55.5 88.0 90.0 77.7 85.9 60.7 92.7 54.0 66.1 45.5 73.3

Ours 92.8 84.4 41.1 83.3 67.8 79.7 88.7 82.4 91.9 42.5 88.0 64.8 87.6 88.0 79.0 83.3 65.1 90.5 58.4 61.7 64.8 75.5

Table 2. Performance on per-class segmentation on VOC validation set.

Figure 1. Per-Class OA Rate Comparison.



Figure 2. More visualization results of CAM on MS COCO.



Figure 3. More visualization results of Segmentation on the PASCAL VOC 2012.

Figure 4. More visualization results of Segmentation on the MS COCO.
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