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1. Overview

This supplementary material provides detailed insights into
our method, covering evaluation details (Section 2), extended
experiments on guidance mechanisms, T2M-BEHAVE
Dataset, and novelty assessment (Section 3), performance
comparisons with baselines (Section 4), user study results
(Section 5), and qualitative results demonstrating the model’s
robustness (Section 6). Additionally, we include compre-
hensive details on motion representation and architecture for
clarity and reproducibility (Section 7), along with a discus-
sion on hand motion synthesis and future extensions (Sec-
tion 8).

2. Evaluation Details

Text and HOI Feature Extraction. Currently, there are
no publicly available feature extractors specifically designed
to evaluate human-object interaction motions. To address
this limitation, we take inspiration from T2M [1] and adopt
a similar evaluation framework. Our method converts the
textual descriptions into feature vectors with a frozen CLIP
text encoder. At the same time, the generated HOI sequences
are processed using an HOI feature extractor based on a
bidirectional GRU (BiGRU) model. Moreover, we modify
the input dimensions of the BiGRU model according to the
representation of HOI sequences. Specifically, the length
of the representation is 216, with 72 dimensions allocated
to the human’s 24 joints, 132 dimensions representing 6D
continuous rotations, 9 dimensions for the object’s rotation
matrix, and 3 dimensions for object transformations. By
minimizing the distance between features of the matched
text-HOI pairs, this approach establishes a strong alignment
between the textual descriptions and HOI motion sequences.

Contact Percentage. Following the method in CHOIS
[2], we compute the Contact Percentage by calculating the
minimum distance between hand joints and object vertices
at each frame. A 5 cm threshold is used to determine con-
tact. The Contact Percentage is then the ratio of frames
with contact to the total number of frames, representing the
proportion of time during which hand-object contact occurs.

Collision Percentage. In line with OMOMO [3], we
compute the Collision Percentage by querying the object’s
Signed Distance Function (SDF) at each time step for each
vertex on the reconstructed human mesh. A 4 cm threshold
is applied to detect collisions, where a collision is counted if
the signed distance is negative and its absolute value exceeds
4 cm. The Collision Percentage is calculated as the ratio of

frames with collisions to the total number of frames in the
sequence.

Motion Deviation. Following the approach in ARCTIC
[4], we define the Motion Deviation (MDev) metric to as-
sess the consistency of motion between the hand and object
vertices in a HOI sequence. MDev measures the difference
in movement directions between the hand and object ver-
tices over consecutive frames within a window (m,n). Let
ht
i and otj represent the hand and object vertices at frame

t, respectively. A contact window (i, j,m, n) is defined as
the longest period during which ht

i and otj remain within a
threshold α = 5 cm for all frames between m and n, with
no contact at frames m − 1 and n + 1. The MDev is then
calculated as:
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where MDev quantifies the movement consistency between
the contacting hand and object vertices. The final MDev
value is the average of MDev values across all detected
windows, with the result expressed in millimeters (mm).

3. Additional Experiments

Impact of Guidance Mechanism at Different Noise Lev-
els. In this section, we examine the impact of the diffusion
timestep selection on the effectiveness of IDF Guidance.
To assess how different timestep settings affect generation
performance, we conducted a series of experiments. As
summarized in Table 1, the results show that initiating IDF
Guidance during the final 10 timesteps yields the best results.
This approach outperforms both applying IDF Guidance
throughout all 1000 timesteps and applying it solely during
the final timestep, highlighting the importance of timing the
guidance effectively for optimal results.

Effect of Guidance Iterations. This section examines
the influence of the number of guidance iterations on the
performance of IDF-guided denoising. Specifically, we per-
form k iterations of L-BFGS optimization at each denoising
step, where k is treated as a tunable hyperparameter. The
experiments are conducted during the last 10 timesteps of
the denoising process to refine the generation results. As
summarized in Table 2, increasing k to 10 demonstrates the
most significant improvement, achieving the best balance
across metrics such as Precision, FID, and Motion Devia-
tion. This outcome highlights the importance of iterative



Methods Precision↑ FID↓ C% MDev↓
w/o Guidance 0.879 5.726 0.424 7.020

t ≤ 0.001T 0.888 5.159 0.458 6.435
t ≤ 0.005T 0.896 5.129 0.463 5.927
t ≤ 0.01T 0.902 5.119 0.466 5.815
t ≤ 0.1T 0.890 5.399 0.464 6.590
t ≤ 0.5T 0.879 5.586 0.430 6.938
t ≤ T 0.879 5.590 0.431 6.954

Table 1. Quantitative results showing the impact of guidance
timesteps on generation performance during diffusion. Initiating
IDF Guidance during the final 10 timesteps (t ≤ 0.01T ) consis-
tently achieves the best performance across metrics. Precision
refers to the R-precision top-3 metric.

Methods Precision↑ FID↓ C% MDev↓
w/o Guidance 0.879 5.726 0.424 7.020

k = 1 0.883 5.597 0.430 6.837
k = 5 0.900 5.347 0.474 6.482
k = 10 0.902 5.119 0.466 5.815

Table 2. Effect of guidance iterations (k) on generation perfor-
mance during the final 10 denoising steps. Increasing k enhances
performance, with k = 10 achieving the best results.

R (·) Params Precision↑ FID↓ C% MDev↓
MDM 28.79M 0.887 5.529 0.370 6.204
MDM 30.89M 0.890 5.358 0.431 7.401
MDM 33.00M 0.896 5.384 0.410 6.703
Ours 29.36M 0.902 5.119 0.466 5.815

Table 3. Performance comparison of relation models R (·). Ours,
based on the VDT model with spatial and temporal attention mech-
anisms, achieves superior precision, FID, and MDev metrics com-
pared to the MDM model, despite having comparable or smaller
parameter sizes.

refinement in aligning distributions, as second-order opti-
mization enables more precise adjustments and accelerates
convergence towards the target solution.

Influence of the Relation Model. We evaluated the impact
of the Relation Model by replacing the original VDT model
[5] with the MDM model [6] and increasing the number of
Transformer encoder layers in MDM to expand its param-
eters during training. The results, summarized in Table 3,
indicate that VDT consistently outperforms MDM across
all metrics. This advantage is attributed to VDT’s spatial
and temporal self-attention mechanisms, which enable it to
effectively capture complex dependencies, leading to higher-
quality outputs.

Method FS ↓ C% Coll% MDev↓

GT 0.071 0.410 0.370 8.989
HOI-Diff[7] 0.182 0.191 0.259 24.807
Ours 0.174 0.239 0.195 10.784

Table 4. T2M-BEHAVE [7] cross-benchmark tests: 24.6% lower
collisions vs HOI-Diff (0.195 vs 0.259), despite dataset’s compact
scale.

Figure 1. Novelty analysis. L2 distances of 512 test cases vs.
top-3 training neighbors. Red lines mark intra-trainset distance,
demonstrating generation beyond training data.

Results on T2M-BEHAVE Dataset. As FullBodyManip-
ulation (FBM) is much larger than other text-conditioned
HOI datasets, both our work and CHOIS [2] adopt FBM
only for benchmarking. We have included evaluations on
T2M-BEHAVE [7] in Table 4. The results highlight inher-
ent dataset characteristics, with ground-truth (GT) collision
metrics registering at 0.370. While the dataset’s compact
scale and lack of dedicated interaction-focused evaluation
protocols limit comprehensive benchmarking, our method
demonstrates improved physical plausibility by reducing col-
lisions to 0.195 compared to HOI-Diff’s 0.259. The motion
quality metrics (FS: 0.174 vs. 0.182; MDev: 10.784 vs.
24.807) indicate our approach maintains reasonable fidelity.

Retrieval vs Generation Following CG-HOI [8], Figure
1 first detects top-3 nearest training samples for each of
512 test cases, then plots an L2 distance histogram. It also
marks the intra-trainciteset distance with a red line. It shows
the generated motions mostly fall outside the intra-trainset
distance, which confirms our model produces novel motions
rather than retrieval.

4. Model Complexity and Inference Efficiency
Table 5 compares computational costs for 10-second motion
generation on an RTX 4090 GPU, with all models trained
for 300,000 steps. Our method combines a motion diffusion
model (17.98M parameters) and a relation diffusion model



Metric InterGen MDM HOI-Diff CHOIS Ours

Params(M) 54.24 17.91 47.74 13.25 47.34
Inference time(s) 2.0 0.36 3.68 2.93 8.1

Table 5. Comparison of model complexity and inference efficiency.
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Figure 2. User study. We generated HOIs for 15 captions using 4
methods and asked 20 users to rank them by text alignment and
realism. Our method outperforms others in both aspects.

(29.36M parameters). With a batch size of 32, our method
achieves an average of 8.1 seconds per sequence, remain-
ing viable compared to baselines (MDM: 0.36s, HOI-Diff:
3.68s).

5. User study
We conducted a user study comparing four HOI generation
methods across 15 text captions, with twenty participants
ranking the results based on two evaluation criteria: (1) Se-
mantic Consistency (alignment between animations and text
descriptions) and (2) Interaction Naturalness (naturalness
of poses and object interactions). As shown in Figure 2,
our method outperformed three baseline methods in both
metrics, demonstrating superior text-visual correspondence
and biomechanical plausibility.

6. Additional Qualitative Results
In this section, we provide additional HOI generation re-
sults across diverse settings, highlighting the versatility and
effectiveness of our approach.

Consistent Motions across Different Objects. We assess
our method’s ability to generate consistent motions across
different scenarios, such as “lift the object, move the object,
and put down the object” across different objects. Figure
3 illustrates the interaction results for a monitor, trashcan,
plastic box, large box, and chair. These examples highlight
ROG’s ability to produce semantically accurate and consis-
tent interactions across a range of objects.

Diverse Motions on the Same Object. We evaluate the
ability of ROG to generate diverse motions for the same
object. Taking a clothes stand as an example, Figure 4

showcases a range of motions, including “lift the object”,
“put down the object”, and “pull the object”. These results
demonstrate the flexibility of our approach in producing se-
mantically distinct and contextually appropriate interactions
with a single object.

7. Method Details

Motion representation Details. The motion data is repre-
sented in a 288-dimensional vector per frame, comprising
two primary components: human motion and object-related
information. The 204-dimensional human motion data cap-
tures both the global 3D coordinates of 24 body joints (24×3)
and the 6D rotational parameters for 22 joints (excluding
palm joints, 22×6). The remaining 84 dimensions describe
object interactions through three key elements: the object’s
global position (3), its 3×3 rotation matrix (9), and the spa-
tial coordinates of 24 predefined key points on the object’s
surface (24×3).

Architecture Details. Figure 5 illustrates the details of our
relation model, including the IDF encoder and VDT layers.

8. Hand Motion Synthesis and Future Exten-
sions

While our framework currently omits fine-grained hand mo-
tion synthesis, this limitation primarily stems from the lack
of comprehensive hand-object interaction data in mainstream
HOI benchmarks such as FullBodyManipulation and BE-
HAVE. Existing datasets predominantly focus on coarse
full-body dynamics, leaving finger-level articulations under-
explored. By extending the Interactive Distance Field (IDF)
to incorporate hand-specific keypoints (e.g., fingertip posi-
tions), our framework can seamlessly adapt to richer repre-
sentations. This flexibility demonstrates the broad applicabil-
ity of our method across different motion scales, enabling the
generation of both body movements and hand manipulations
when trained on appropriate data.
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Lift the object, move the object, and put down the object.
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Figure 3. Our model generates semantically accurate and consistent human-object interactions across various objects.
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Lift the clothes stand, move the clothes stand, and put down the clothes stand.

Put the clothes stand horizontally down.

Pull the clothes stand, and set it back down.

Figure 4. Our model generates diverse and semantically distinct human-object interactions for a single object.
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Figure 5. Overview to our Relation Model’s architecture. It consists of an IDF encoder and multiple VDT layers.
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