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In this supplementary document, we describe model
training details in Appendix A, and provide more evalua-
tion results in Appendix B. In addition, we present qual-
itative visualization for geometric, semantic and temporal
matches across different methods in Appendix C.

A. Supervision and Training Details

Geometric matching supervision. We train geometric de-
scriptors with ground-truth geometric correspondences as
previous local features [2, 12, 14]. We leverage the dual-
softmax loss function proposed in [12] which employs
the negative log-likelihood loss over matching probabilities
from mutual directions. Given an image pair I® and I® with
M ground-truth geometric correspondences, we first sub-
sample sparse geometric descriptors X7 and X g € RM*Dy
located at keypoints with ground truth annotations from the
extracted dense geometric descriptors F' and Fé’. We then
compute the similarity matrix S € RM*M from two sets
of sparse descriptors, i.e., S = X2(X})”, and compute the
geometric loss defined as:

Lgeo = — Z log(softmax,(5);;)

— Z 1og(softmaxT(ST)ii), (1)
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where we apply softmax from both matching directions
over the similarity matrix.

Semantic matching supervision. Similar to geometric
matching supervision, we train semantic descriptors with
ground-truth semantic matches which are sparsely anno-
tated by human. Thus, we subsample sparse semantic de-
scriptors X¢ € RM*D: and X? € RM*Ds at keypoint
locations with ground truth. We adopt the commonly used
the CLIP contrastive loss [13] f.; defined as:

foo = fee(TXEXDT,0) + foe(rXUXHT,0), ()

where f. is the CrossEntropy loss and 7 is the scale param-
eter. O = (0,1,..., M — 1)T is the ground-truth labels with
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M classes. The sparse contrastive loss, however, only min-
imizes the distances between positive pairs and ignores the
distances between negative pairs. To compensate for that,
an additional dense semantic flow loss [5] is adopted as
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where e is the Gaussian noise with mean of 0 and standard
variance of 25, p¢ is the ground-truth correspondence, and
p{ = >, mi(q)q is the predicted correspondence. pf is
the average of all positions ¢ = (u,v) of F* weighted by
matching probability m;(q) between descriptor X¢; at the
index of i and F! . The matching probability m;(q) is the
normalized similarity value between X¢; and Fsbﬂ and is
computed as:

X (FLT

exp(
ml(q) = Xa .(Fb /)T ) (4)

where [ is the temperature.

The optical flow loss enforces semantic descriptors to
maximizes the distances between negative pairs while min-
imizing the distances between positive pairs. The total loss
for semantic matching is the combination of sparse con-
trastive loss L.; and dense flow loss L f;4,,:

Lsem = we L + wflowalowa ()

where w,; and w4, are weights balancing the two losses.
Training data. We train our model using both geomet-
ric and semantic datasets, balancing samples across each
dataset to ensure even representation. For geometric match-
ing supervision, we use the ScanNet [1] and MegaDepth [7]
datasets adopting dataset splits used in [15] leading to ap-
proximate 15k indoor sequences from ScanNet and 441
outdoor sequences from MegaDepth. We use the ground-
truth poses and depth maps to generate correspondences for
training. For semantic matching supervision, we use PF-
PASCAL [4], SPair-71k [9], and AP-10k [18] as in [19].



PF-PASCAL includes 2941 training pairs from 20 object
categories. SPair-71k offers 53k training pairs across 18
categories with high intra-class variation. AP-10k provides
10k images across 23 categories, with an additional 261k
pairs generated for semantic training.

Training schema. To properly train MATCHA, we adopt
a multi-stage training schema. Empirically, we found ge-
ometric descriptors require more iterations to be trained
properly. This is likely to be caused by the imbalanced
number of available annotated data, i.e., we have more ge-
ometric samples than semantic samples. Training too long
on limited semantic matching correspondences harms gen-
eralization. Therefore, to compensate the data imbalance,
we 1) first train the model purely on geometric matching
with frozen semantic features using L., and 2) next jointly
train both geometric and semantic descriptors on geomet-
ric and semantic matching using a weighted combination of
both supervisions as:

Ltotal = Lgeo + wsemLsem- (6)

Implementation details. MATCHA is implemented on
PyTorch [11] with 8 blocks consisting of both self and cross
attention layers. The hidden size of the self and cross at-
tention layer is 512 and the number of head is 8. The di-
mension of final geometric and semantic descriptors is 256
and 768. The patch size p used to patchify geometric and
semantic features is set to 2 for both geometric and seman-
tic features. In the training process, hyper-parameters of 7
(Eq 2), ﬁ (Eq 4), we (Eq 5), W flow (Eq 5), and Wsem
(Eq. 6) are set to 0.02, 14.3, 1.0, 1.0, 0.1, respectively.

We train MATCHA using AdamW [8] optimizer with
weight decay of 1x 10~ and initial learning rate of 1x10~*
on 4 H100 GPUs for 220k iterations in total with 150k it-
erations at the first stage. The learning rate is reduced to
5 x 1075 and 2 x 10~° after 100k and 150k iterations. The
batch size is set to 24 and 48 for the first and second stage
training, respectively. All images are sized to 512 x 512 in
the training process.

B. Additional Evaluations

Temporal matching. = We provide additional ablation
study to understand the performance of different types
of features on temporal matching. Specifically, we con-
sider the geometric (geo) and semantic (sem) of descriptors
of MATCHA-Light and DIFT [16] models and their uni-
fied feature version, i.e., DIFT.Uni, MATCHA-Light.Uni.
We also consider the feature models that combine DI-
NOv2 [10], i.e., DIFT.Uni + DINOv2 and MATCHA.

As shown in Tab. 1, low-level geometric features are
more important to temporal matching than high-level se-
mantic features, i.e., DIFT (geo) vs DIFT (sem), and
MATCHA-Light (geo) vs MATCHA-Light (sem). We also

TAPVid-Davis [3]

Method Supervision PCK@0‘01/0‘05/0‘1
DIFT (geo) [16] X 75.6/82.6/86.9
DIFT (sem) [16] X 71.9/81.4/86.4
MATCHA-Light (geo) GM+SM 75.7/82.8/87.0
MATCHA-Light (sem) GM+SM 64.9/77.9/84.3
DINOv2 [10] X 83.2/89.7/92.0
DIFT.Uni [16] X 79.7/86.7/90.5
DIFT.Uni + DINOv2 [10, 16] X 86.4/91.6/93.5
MATCHA-Light.Uni GM+SM 78.71/86.3/90.2
MATCHA GM+SM 87.8/93.5/95.5

Table 1. Ablation Study on Temporal Matching. We report the
Percentage of Correct Keypoints (PCK) under different thresholds.
The best and second-best results are highlighted.

notice that geometric supervision leads to improved tem-
poral matching, i.e., MATCHA-Light (geo) vs DIFT (geo).
In contrast, adding semantic supervision produces degraded
temporal matching accuracy, i.e., MATCHA-Light (sem) vs
DIFT (sem), which shows that sparse semantic correspon-
dence supervision across instances leads to decreased capa-
bility in establishing matches between the same instance.

The combination of geometric and semantic features
contains the properties of the both features, giving better
temporal matching accuracy i.e., DIFT.Uni vs DIFT (geo),
and MATCHA-Light.Uni vs MATCHA-Light (geo). As dis-
cussed in the main paper, DINOv2 benefiting from its large-
scale learning on single object-centric data, is able to well
handle large viewpoint and scale changes, especially for
single-object dominant scenes, leading to surprisingly su-
perior temporal matching performance. By combining with
DINOV2 features, both DIFT.Uni and MATCHA have sig-
nificant improvement in temporal matching, i.e., MATCHA
vs MATCHA-Light.Uni, DIFT.Uni + DINOv2 vs DIFT.Uni,
validating object-level semantic representation learned by
DINOV2 is complementary to semantic features extracted
from stable diffusion models.
Ablation on obtaining a unified feature. In the main pa-
per, we adopt a simple concatenation-based merging mech-
anism to obtain a unified feature. To further validate this de-
sign choice, we provide additional ablation study focusing
on comparing different ways of unifying knowledge in fea-
ture representations. Specifically, we consider MATCHA -
Light that learns to fuse geometric and semantic features
yet keeping separate descriptors for geometric and seman-
tic matching following DIFT, MATCHA-Light.Uni that
combines the MATCHA-Light geometric and semantic de-
scriptors with concatenation-based merging, MATCHA-
Light.Uni.S that further supervises MATCHA-Light.Uni
with joint geometric and semantic training, as well as
MATCHA, our final model, that combines DINOv2 with
MATCHA-Light.Uni.

In Tab. 2, we show that simple concatenation-based
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MATCHA-Light X
MATCHA-Light.Uni v
MATCHA-Light.Uni.S v
MATCHA v

GM+SM  51.4/60.1/67.1  59.5
GM+SM  50.0/59.0/66.5 585
GM+SM  499/584/654 579
GM+SM  51.7/61.0/68.5  60.4

69.0/90.6/96.2 85.3
60.8/82.8/90.4 78.0
36.8/53.0/62.4 50.7
70.2/91.3/97.0 86.2

78.7/86.3/90.2 85.1 76.6
78.7/86.3/90.2 85.1 73.9
79.1/85.9/89.5 84.8 64.5
87.8/93.5/95.5 92.3 79.6

Table 2. Ablation study on obtaining a unified feature. We compare different ways of obtaining a unified feature. We show that simple
concatenation leads to better way to keep the learned geometric and semantic representation while adding additional joint training on the
concatenated feature pushes the feature to focus more on geometric matching, leading to significantly degraded semantic matching.

merging (MATCHA-Light.Uni) can effectively unify both
semantic and geometric matching capabilities learned by
MATCHA-Light, giving a single feature at slight decrease
in matching performance across tasks. When we further
finetune such unified feature with joint geometric and se-
mantic matching supervsion, we observe significant drop
in semantic matching performance. We consider such be-
havior is mainly caused by the imbalanced training data
between geometric and semantic matching. Compared to
training individual descriptors, such data limitation imposes
more challenges for balancing the two tasks when training
a single unified descriptor. Therefore, we finally opt for
simple concatenation as our mechanism to unify different
types of foundation feature representations. It turns out to
be highly effective also when combing the complementary
semantic knowledge learned by DINOv2 into MATCHA.
Computation analysis. We report the runtime, FLOPs,
and memory usage of our models on input images with var-
ious sizes during inference in Tab. 3. Our analysis shows
that the primary runtime bottleneck is diffusion feature ex-
traction, while the overhead introduced by our feature fu-
sion network is negligible. Our approach can benefit from
advances in efficient diffusion model inference. Alterna-
tively, MATCHA features could be distilled into a more
lightweight model.

Model Params. Input Runtime (ms) FLOPs | Memory
M H xW |DIFT,; DINOv2 FusionNet\ Total | x10'2 | GB

MATCHA 1282.8 | 256 x 256 | 156.3 9.4 6.8 172.5 | 2.25 7.59
512 x 512 | 687.3 30 17 7343 | 8.79 11.36
1024 x 768 | 2687.3 1419 101.3  |2930.5| 26.24 | 21.43

MATCHA-Light | 978.4 | 256 x 256 | 161.7 0 6.5 168.2 | 2.03 6.46
512 x 512 | 702.9 0 15.8 718.7 | 7.96 10.23
1024 x 768 | 2715.7 0 99.9 2815.6| 23.77 | 20.29

Table 3. Computation analysis on an NVIDIA RTX 5880 GPU.

C. Visualization

Finally, we provide visualization for different feature mod-
els through their feature similarity distribution as well as
the established correspondences across different scenes. We
compare MATCHA-Light and MATCHA to MASt3R.E [6],
DISK [17], DINOv2 [10], DIFT [16] and the supervised
DIFT (DIFT.S).

Heatmap. In Fig. I, we visualize the heatmaps and
predicted matches produced by different methods, start-
ing from a given source point. The heatmaps represent
the normalized cosine similarity between the features ex-
tracted at the source point and every pixel in the target im-
age. DISK [17], as a local feature method, focuses primar-
ily on local texture regions, often resulting in poor matches
in scenes with repetitive structures or semantically simi-
lar content. MASt3R [6], despite being trained on a larger
dataset, still exhibits similar limitations, providing subopti-
mal matches in these challenging scenarios. DINOv2 [10],
on the other hand, excels in cases with single objects, pro-
ducing sharp and localized heatmaps. However, its per-
formance degrades in the presence of noisy backgrounds
or repetitive structures, where it fails to generate accurate
matches.

For DIFT.Uni, DIFT.S.Uni, and MATCHA-Light, we
compute their heatmaps using concatenated geometric and
semantic features. DIFT captures more low-level texture
details, leading to high similarity scores in regions with
repetitive patterns. DIFT.S.Uni improves upon DIFT.Uni
by incorporating supervision, but it remains less robust to
variations in semantic content due to its task-specific train-
ing. MATCHA-Light, with joint training and dynamic fea-
ture fusion, addresses these issues to some extent, provid-
ing more accurate matches for both repetitive textures and
semantically rich content. However, as it shares the same
diffusion-based features as DIFT.Uni and DIFT.S.Uni, it
struggles with ambiguity in visually similar parts of the
same object, such as the head and tail of an airplane.

Finally, MATCHA resolves these challenges by incorpo-
rating complementary object-level features from DINOv2.
This integration significantly enhances its ability to disam-
biguate similar object parts and produce accurate matches
even in complex scenes, making it the most robust method
among the evaluated approaches.

Geometric matching. In Fig. 2 and Fig. 3, we evaluate
geometric matching using relative camera pose estimation
and RANSAC to identify inlier matches for both indoor
and outdoor scenes. Geometric methods such as DISK [17]
and MASt3R.E [6] primarily rely on low-level texture pat-
terns, which limits their ability to handle repetitive textures



and capture high-level structures effectively. In contrast,
DINOV2 [10] focuses on object-level features, capturing
higher-level structures but yielding sparse matches due to
its limited reliance on detailed textures. DIFT strikes a
balance between low- and high-level information, yet its
lack of geometric supervision reduces the number of inliers
compared to its supervised counterpart, DIFT.S, MATCHA-
Light, with its dynamic fusion mechanism, propagates high-
level semantic knowledge to geometric features, resulting in
improved inliers at both object- and patch-level. This ability
is further enhanced in MATCHA, where additional features
from DINOV2 are fused, leading to the highest number of
inliers among the evaluated methods.

Semantic matching. As illustrated in Fig. 4, Fig. 5, Fig. 6,
Fig. 7, and Fig. 8, we visualize both and outliers
across various objects to assess semantic matching perfor-
mance. Local geometric features, such as DISK [17] and
MASt3R.E, fail to establish meaningful semantic corre-
spondences, as they primarily rely on low-level textures and
patterns.

While feature models like DINOv2, DIFT, and DIFT.S

demonstrate a coarse ability to capture semantic correspon-
dences, they often struggle with utilizing low-level details
for precise local discrimination, leading to inaccuracies in
challenging scenarios. In contrast, MATCHA effectively in-
tegrates both geometric and semantic cues, achieving robust
and accurate semantic matches even under extreme scale
and viewpoint variations, outperforming other methods in
these complex scenarios.
Temporal matching. We present visualizations of tempo-
ral matches in Fig. 9, Fig. 10, Fig. 11, and Fig. 12, eval-
uating the performance of various methods. In addition to
previously discussed baselines, we include the unified DIFT
feature variants, DIFT.Uni and DIFT.S.Uni, which demon-
strate improved temporal matching compared to their spe-
cific geometric or semantic descriptors.

Overall, we observe that the local feature DISK per-

forms the worst in handling highly dynamic objects, such
as a jumping horse or moving bikes, due to its reliance on
low-level patterns. MASt3R.E shows marginal improve-
ment but is still outperformed by other methods. Among
all approaches, MATCHA stands out as the most accurate
and robust for temporal matching, effectively handling the
challenges of dynamic scenes.
Failure cases. Despite its strengths, temporal matching re-
mains a challenging task, as shown in Fig. 11 and Fig. 12.
All methods struggle in scenarios where repetitive patterns
in the background coincide with extreme scale and view-
point changes caused by object motion. These limitations
highlight the need for further research to improve the ro-
bustness and accuracy of temporal matching in highly dy-
namic and complex scenes.
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Figure 1. Visualization of heatmap. Given a source point (top), we visualize the heatmap and predicted matches of MASt3R.E [0],
DISK [17], DINOv2 [10], DIFT [16], DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 2. Geometric matches on outdoor scenes. We visualize the inliers after RANSAC of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT [16], DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA. DISK produces many inliers on
local patches but is not robust to repetitive structures. MASt3R and DINOv2 focus more on structures and give close performance. DIFT
works better than DINOv2 especially on regions with rich textures. With geometric supervision, DIFT.S improves the performance of
DIFT. MATCHA-Light is able to find correct matches from both local patches and structures because of dynamic fusion and this ability is
further enhanced by fusing features of DINOv2.
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Figure 3. Geometric matches on indoor scenes. We visualize the inliers after RANSAC of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT [16], DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA. Almost all previous methods fail to
find sufficient inliers on scenes with repetitive structures except MATCHA which fuses both low and high-level information. Additionally,
MATCHA is able to produce more inliers in scenes with rich textures (middle column).
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Figure 4. Semantic matches on bus category. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DINOv2 [10], DIFT [16],
DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 5. Semantic matches on plant category. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT [16], DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 6. Semantic matches on sheep category. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT [16], DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 7. Semantic matches on chair category. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT [16], DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.

11



MASt3R.E*

DISK *

DINOv2 4

DIFT 1\ &%

DIFT.S &

MATCHA-Light .\

MATCHA |

Figure 8. Semantic matches on motorbike category. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT [16], DIFT.S (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 9. Temporal matches on goldfish sequence. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT.Uni [16], DIFT.S.Uni (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 10. Temporal matches on horsejumphigh sequence. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DI-
NOv2 [10], DIFT.Uni [16], DIFT.S.Uni (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 11. Temporal matches on soapbox sequence. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DINOv2 [10],
DIFT.Uni [16], DIFT.S.Uni (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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Figure 12. Temporal matches on scooterblack sequence. We visualize the inliers and outliers of MASt3R.E [6], DISK [17], DI-
NOv2 [10], DIFT.Uni [16], DIFT.S.Uni (fully supervised version of DIFT), and our models MATCHA-Light and MATCHA.
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