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Figure I. Zero-shot classification accuracy averaged on 12 datasets
when varying balancing parameters between LRaFA and LHyCD

(ViT-B/32).
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Figure II. Zero-shot performance on 12 classification datasets and
retrieval datasets when varying α in LHyCD (ViT-B/32).

A. Effects of Hyperparameters
In the main paper, we fixed the contributions of LRaFA, LHyCD in CLIP-Refine and the hyperparameter of α in Eq. (1) for
HyCD, and epochs for post-pre-training. Here, we confirm the effects of varying them on the performance.

Trade-off between LRaFA and LHyCD We evaluate balancing LRaFA and LHyCD in Eq (1) by introducing hyperparameters
λRaFA and λHyCD as follows:

min
θV,θT

λRaFALRaFA(θV, θT) + λHyCDLHyCD(θV, θT).

We varied λRaFA and λHyCD in {0.2, 0.4, 0.6, 0.8, 1.0} and post-pre-trained CLIP ViT-B/32 on COCO Caption. Figure I
illustrates the heatmap where each cell represents the zero-shot classification accuracy averaged on 12 datasets. We can see
that the diagonal elements of the heatmap achieve higher performance, indicating that keeping the equal contribution of λRaFA

and λHyCD is important for better zero-shot performance.

Trade-off parameter α in LHyCD We evaluate the trade-off parameter α in Eq.(8) for balancing learning of the new
knowledge from post-pre-training and retaining of the past knowledge in the pre-trained CLIP models. We varied α in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Figure II shows the trend of the averaged zero-shot classification and retrieval
accuracy. We see that the trends in classification and retrieval are different; the classification performance is less sensitive
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Figure III. Zero-shot classification accuracy averaged on 12 datasets when varying epochs in post-pre-training.

Table I. Robustness Evaluation on Zero-shot Classification.

Method IN1K V2 A R Sketch

Pre-trained 59.04 51.80 28.84 64.81 38.38
Contrastive 37.04 45.52 22.92 62.80 35.57
m2-mix 59.06 46.32 22.51 63.42 35.59
Self-KD 51.88 52.01 28.65 65.08 38.52
HyCD+LAlign 57.06 45.41 21.45 62.00 34.73
CLIP-Refine (Ours) 60.92 53.51 30.68 67.05 41.46
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than the retrieval performance, and an overly high value of α degrades both performances. This suggests that prioritizing new
knowledge is important but balancing the new and past knowledge is crucial to achieve the best performance.

Post-pre-training Epochs We show the effect of increasing post-pre-training epochs from one, which is used in the
main paper. Figure III shows the averaged zero-shot classification accuracy when varying the post-pre-training epoch in
{1, 3, 5, 7, 9}. CLIP-Refine stably kept performance even when increasing epochs, while the contrastive loss slightly degraded
the performance according to the epochs. This implies that our CLIP-Refine can provide stable performance improvements by
avoiding catastrophic forgetting even in longer epochs. This also means that our CLIP-Refine has the practical advantage of
not having to search for the appropriate epoch length in each case.

B. Additional Experiments
B.1. Robustness Evaluation
Here, we evaluate the robustness of our method through the evaluation on ImageNet variants including ImageNet-V2 [3],
ImageNet-A [2], ImageNet-R [1], and ImageNet-Sketch [4]. Table I that our method robustly performs on these variants,
supporting the general performance improvements of our method.

B.2. Visualization Study
We randomly selected samples of Flickr30K from which CLIP failed, but CLIP-Refine succeeded (Fig. IV). We see that
CLIP-Refine can match complex text and image pairs with multiple attributes and object combinations. This highlights that
the multi-modal alignment is enhanced by reducing the modality gap.
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