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In Appendix A, we describe the performance of multi-
ple state-of-the-art methods after training from scratch on
the AscendMotion dataset. For evaluation, we report mul-
tiple metrics, including Procrustes-Aligned mean per-joint
position error (PMPJPE), which corresponds to the World-
Aligned MPJPE (WA-MPJPE) calculated by aligning each
segment to the ground truth, mean per-joint position er-
ror (MPJPE) aligned to the first two frames (W-MPJPE),
percent correct keypoints (PCK) as a percentage indicator,
Per Vertex Error (PVE), root translation error (RTE), mo-
tion jitter (Jitter, in m/s3), relative global translation er-
ror (T-Error, in meters), and acceleration error (ACCEL, in
mm/s2). We analyze these experimental results in depth,
following the motion evaluation protocols of [12, 13] and
the global trajectory evaluation protocols of [3, 19]. We dis-
cuss the content of the experimental results in more depth.
Appendix B shows additional experiments with planar mo-
tion. In Appendix C, the cross-dataset evaluation results are
provided, we show that AscendMotion is a good addition to
today’s human motion recovery community. In Appendix E
and Appendix D, we present the details of the AscendMo-
tion dataset and the ClimbingCap algorithm.

A. Retrain results in AscendMotion

To evaluate the performance of various state-of-the-art
HMR methods on the AscendMotion dataset, we catego-
rized the scene into horizontal and vertical based on the pri-
mary direction of human motion. Vertical scenes pose more
significant challenges for both climbers and HMR methods
compared to horizontal scenes.

Horizontal Scene

Vertical Scene

Figure 1. Rock climbing wall in the AscendMotion dataset. The
top and the middle row of the scene are horizontal scenes (horizon-
tal walls), which are not high and the major direction of motions
is horizontal. The bottom row are vertical scenes (vertical walls),
which are high and more challenging to climbers than the horizon-
tal scenes. In each rock climbing wall, a SMPL model with T-pose
is placed close to the wall.

In this section, GVHMR [12], LiveHPS [11], LEIR [19],
are retrained from scratch based on the AscendMotion
dataset. The retrained results of these methods (trained from
scratch) are marked with the symbol ’*’, while the results

1



Modality Method Camera Coordinate World Coordinate

ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑ WA-MPJPE↓ W-MPJPE↓ RTE↓ Jitter↓ T-Error↓

RGB GVHMR [12] 26.22 124.60 80.30 151.10 0.71 1002.11 1442.50 7.91 32.71 2.54
GVHMR* [12] 25.86 123.81 86.40 151.82 0.71 1112.71 1413.28 8.50 30.81 2.22

LiDAR LiveHPS [11] 195.23 147.31 121.76 189.30 0.70 1369.89 1506.50 10.45 358.54 6.73
LiveHPS* [11] 84.07 123.84 101.48 145.53 0.74 1064.50 1103.62 9.85 255.02 5.54

LiDAR+RGB
LEIR [19] 94.57 299.62 150.56 351.52 0.37 1313.09 1435.92 9.97 85.03 1.20

LEIR* [19] 58.14 141.06 95.73 174.11 0.67 388.33 539.62 3.50 48.17 1.08
Ours 17.25 88.92 74.50 106.42 0.78 85.26 106.95 3.12 27.75 1.29

Table 1. HMR Retrain Comparison in AscendMotion Dataset(Vertical Scene). * indicates the results of this method have been
retrained from scratch based on AscendMotion.

Modality Method Camera Coordinate World Coordinate

ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑ WA-MPJPE↓ W-MPJPE↓ RTE↓ Jitter↓ T-Error↓

RGB GVHMR [12] 4.50 107.09 60.06 118.89 0.77 105.15 202.45 4.09 6.85 1.48
GVHMR* [12] 5.17 91.82 58.86 106.31 0.82 110.46 218.23 4.16 8.01 1.38

LiDAR LiveHPS [11] 157.87 156.5 142.19 191.87 0.64 235.4 392.34 13.94 279.96 2.1
LiveHPS* [11] 25.65 92.42 83.29 115.37 0.82 155.81 387.57 16.48 43.48 2.52

LiDAR+RGB
LEIR [19] 110.18 297.95 187.26 340.61 0.41 266.82 282.31 9.78 73.38 1.1

LEIR* [19] 11.04 139.90 123.56 165.15 0.65 221.65 259.91 8.56 57.15 1.08
Ours 5.17 75.45 61.73 94.89 0.91 62.95 78.99 1.57 8.3 1.07

Table 2. HMR Retrain Comparison in AscendMotion Dataset(Horizontal Scene). * indicates the results of this method have been
retrained from scratch based on AscendMotion.

of methods without retraining are unmarked. The exper-
imental results for the vertical scene (vertical rock walls)
and the horizontal scenes are shown in Tab. 1 and Tab. 2,
respectively. The upper rows present the results of multiple
state-of-the-art RGB-based methods, while the lower rows
focus on LiDAR-based and LiDAR+RGB-based methods.

In vertical scenes, ClimbingCap significantly surpasses
all other methods. The second-best performing method,
GVHMR, a representative global HMR algorithm, strug-
gles in vertical scenes, primarily because it estimates move-
ment direction based on horizontal velocity predictions.
However, vertical scenes in AscendMotion feature upward
climbing as the dominant motion pattern, which GVHMR
fails to capture effectively.

LiDAR-based and LiDAR+RGB-based methods under-
perform compared to ClimbingCap, as they fail to ade-
quately account for global trajectories and the relationship
between camera coordinates and global coordinates. These
findings underscore the importance of integrating informa-
tion from both camera and world coordinates to improve
HMR performance on challenging vertical climbing scenes.

In horizontal scenes, ClimbingCap outperforms other
methods in all the metrics, except the PA-MPJPE metric.
It performs significantly better than others in all the world
coordinate metrics such as WA-MPJPE and W-MPJPE.
WHAM and GVHMR achieve good performance in cam-
era coordinate metrics, their performance in world coordi-
nate metrics is less competitive to ClimbingCap.

In order to intuitively understand the results of the world
coordinate metrics of different methods, we visualize the
trajectory of one of the horizontal and vertical rock walls
in the test set, as shown in Figure 2. It can be seen that
the comparison methods can hardly restore the route of the
trajectory, and our proposed method is closest to the real
trajectory.

B. Additional Planar Motion Experiments
To verify the capability of ClimbingCap on other planar
motions, we conducted experiments on the RELI11D [19]
dataset. In these experiments, which focus on sports ac-
tivities on planes, various methods are compared in both
camera and world coordinate systems , as shown in Tab. 3.
For the RGB modality, TRACE, SLAHMR, WHAM, and
GVHMR exhibit relatively higher errors in metrics such
as MPJPE, PA-MPJPE, and PVE. In contrast, for the
RGB+LiDAR modality, the integration of LiDAR data re-
sults in reduced error rates. Specifically, ClimbingCap
achieves the lowest errors, with an MPJPE of 49.30, PA-
MPJPE of 38.23, and PVE of 57.59 in the camera coor-
dinate system, and a PCK0.3 of 0.98. Similarly, in the
world coordinate system, ClimbingCap records the small-
est WA-MPJPE (276.59), W-MPJPE (488.84), RTE (7.10),
Jitter (10.65), and T-Error (23.90). It is important to note
that none of the methods were trained on the RELI11D
dataset, thereby demonstrating the generalization capability
of ClimbingCap for planar motion scenarios.
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Figure 2. Global Trajectory Prediction Comparison Experiment for the AscendMotion Dataset.

Modality Method Camera Coordinate World Coordinate

ACCEL↓ MPJPE↓ PA-MPJPE↓ PVE↓ PCK0.3↑ WA-MPJPE↓ W-MPJPE↓ RTE↓ Jitter↓ T-Error↓

RGB

TRACE [14] - 705.25 62.49 797.86 0.08 396.75 910.01 - - 54.64
SLAHMR [20] 22.67 280.50 186.71 318.04 0.43 435.80 2989.62 78.47 20.88 26.15
WHAM [13] 19.11 57.76 42.90 66.86 0.96 375.56 871.30 11.85 24.81 65.36
GVHMR [12] 13.39 63.22 50.19 77.20 0.93 371.99 765.33 11.41 16.59 36.16

RGB+LiDAR
ImmFusion [1] 30.90 196.96 93.12 261.44 0.65 360.90 586.87 22.15 37.60 32.79
FusionPose [2] 22.97 91.21 55.40 83.90 0.82 375.45 542.92 12.14 19.57 29.94
ClimbingCap 12.18 49.30 38.23 57.59 0.98 276.59 488.84 7.10 10.65 23.90

Table 3. Quantitative Comparison on the planar motion dataset RELI11D [19]. Our method demonstrates superior performance in
both camera and world coordinates.

Metrix Test
Train

AscendMotion CIMI4D AscendMotion+CIMI4D

ACCEL AscendMotion 25.65 212.21 27.11
CIMI4D 174.19 48.22 56.06

MPJPE AscendMotion 92.42 364.26 94.17
CIMI4D 247.18 101.80 100.08

PAMPJPE AscendMotion 83.29 193.53 80.57
CIMI4D 186.40 73.48 68.09

PVE AscendMotion 115.37 404.98 116.50
CIMI4D 294.95 120.86 119.88

PCK0.3 AscendMotion 0.82 0.25 0.82
CIMI4D 0.45 0.79 0.85

Table 4. Cross-dataset evaluation using LiveHPS [11].

C. Cross-Dataset Evaluation

To evaluate the quality of AscendMotion, we conduct
cross-dataset evaluations using the LiveHPS method [11], a
state-of-the-art approach in Human Mesh Recovery (HMR)
based on LiDAR point clouds. LiveHPS was trained on
three datasets: CIMI4D [18], AscendMotion, and a combi-

nation of both (CIMI4D+AscendMotion). Evaluation was
performed on the test sets of CIMI4D and AscendMotion,
respectively, and the results are summarized in Tab. 4.

As depicted in Tab. 4, the cross-dataset evaluation re-
vealed several insights. When LiveHPS is trained on one
dataset, its performance significantly drops when tested on
the other dataset. Specifically, training on CIMI4D and test-
ing on AscendMotion results in worse performance com-
pared to the reverse. When LiveHPS is trained on the com-
bined dataset (CIMI4D+AscendMotion), its performance
on both datasets is not always the best. This is due to the
fact that the climbing motions in the two datasets are dif-
ferent. All the volunteers of the AscendMotion dataset are
skilled climbers whose climbing motions are challenging.
However, most of the volunteers of the CIMI4D dataset are
casual climbers whose climbing motions are casual. A do-
main gap exists among these two dataset. This indicates
that the AscendMotion dataset is a good addition to today’s
climbing motion datasets.



D. Method: ClimbingCap Details

Capturing climbing motion is challenging, as it involves
poses with extreme limb extension and full-body exertion
in camera coordinate. Moreover, it requires precise align-
ment with the rock wall in the world coordinate system
as climbers ascend. The ClimbingCap pipeline consists of
three parts: separate coordinate decoding, post-processing,
and semi-supervised training.

An overview of the proposed pipeline is shown in the
main text Fig.4. The separate coordinate decoding and post-
processing parts take into account the unique challenges
posted by climbing motion, which involves complex off-
ground dynamics and interactions with scenes. The semi-
supervised training part makes use of large-scale unlabeled
climbing motion data to better learn an HMR model.

Notations. Our method utilizes several key notations to de-
scribe human pose and trajectory information. The input
of the sequence consists of Rc

i and Pw
i , which respectively

represent the video sequence input in the camera coordinate
system c and the point cloud sequence input in the global
coordinate system w, where i denotes a frame. We define
the output as: the local body pose {θi ∈ R23×3}Tt=0 and
shape coefficient β ∈ R10 of the SMPL model, which cap-
ture the detailed configuration of the human body; the ori-
entation from SMPL space to camera space, including the
orientation {Γc

i ∈ R3}Ti=0; the trajectory in world space,
including the translation {τwi ∈ R3}Ti=0, aligned with the
global reference frame.

D.1. Coordinate Consistency

As can be seen from the Related Work in the main text
Sec.2, most of the current global HMR methods do not have
a good definition of the correct world coordinate system due
to the lack of 3D point cloud modality. The dataset Ascend-
Motion proposed in the main text Sec.3 explicitly distin-
guishes between these two coordinate systems through the
extrinsic matrix Ωw2c. For ClimbingCap, we hope that the
global LiDAR point cloud information can provide more
implicit information to the pixels in the camera coordinate
system without affecting the estimation in the global coor-
dinate system. We represent the global human trajectory in
the world coordinate system as Γw

t , and obtain the human
trajectory in the camera coordinate system through the ex-
trinsic matrix Ωw2c. Similarly, the human joints Υc

t in the
camera coordinate system can also be aligned to the world
coordinate system through Ω−1

w2c. The subscript c represents
the camera coordinate system, the subscript w represents the
world coordinate system, and the subscript w2c represents
the matrix from the world coordinate system to the camera
coordinate system.

Given the inherent ambiguity in defining the world coor-
dinate system, we first recover the human pose in the cam-

era coordinate system for each frame, and then convert these
poses into a consistent global trajectory. This approach
takes into account the unique challenges posed by climb-
ing motion, which involves complex off-the-ground dynam-
ics and interactions with non-planar surfaces. Climbing
motions require precise alignment with gravity as climbers
adapt to available holds, often requiring extreme limb ex-
tension and full-body exertion. Our approach focuses on
maintaining consistency with gravity while handling these
unique motions, which are often underrepresented in exist-
ing datasets. For global translations, we predict the dis-
placement of the body in the SMPL coordinate system from
time i to i + 1 and then transform it to the world reference
frame. This process ensures that the trajectory accurately
reflects the climber’s movements in a variety of climbing
scenarios.

The separate coordinate decoding (SCD) stage extracts
features from the RGB imagery and the LiDAR point
clouds, predicts the poses in camera coordinates and the po-
sitions in global coordinates.

D.2. Separate Coordinate Decoding Details

Input and Feature Extraction. The overall network struc-
ture is illustrated in the main text Fig.4. The input includes
RGB images and point cloud data. First, the point cloud
data is transformed from the world coordinate system to
the camera coordinate system via an extrinsic matrix, repre-
sented as Pc = Ωw2c · Pw. Subsequently, the RGB images
and transformed point cloud data are passed through feature
extraction modules, RGB Extract and PC Extract, to obtain
visual and geometric features. We build the feature extrac-
tion modules based on ViT [4] and PointNet++ [10]. These
features are then fed into the following two decoder mod-
ules, which regress the SMPL parameters and global motion
parameters of the human body, respectively.

Camera Coordinate Decoder. This module decodes the
SMPL parameters in the camera coordinate system. The
RGB and point cloud features serve as inputs to the Camera
Coordinate Decoder (denoted as TDecoder), which processes
the inputs with contextual information fbackbone, generating
an output token tout. This output token is then used to iter-
atively optimize the SMPL parameters, including the pose
θ, shape β, and camera translation ∆c. The iterative decod-
ing approach allows the model to gradually approximate the
true pose and shape in the camera coordinate system. In
each iteration, the decoder updates the current SMPL pa-
rameters θi, βi, and ∆ct as follows:

tout = TDecoder(t, fbackbone), (1)

where θi+1 = Φθ · tout + θi, βi+1 = Φβ · tout + βi, and
∆ci+1 = Φc · tout +∆ci are the update equations, with Φθ,
Φβ , and Φc representing the respective weight matrices for



each parameter. Here, the input token t can include initial-
ized pose, shape, and camera parameters as needed.

Global Coordinate Decoder. To fully capture the human
motion trajectory in the world coordinate, we design the
Global Translation Decoder to predict the global transla-
tion parameters Γtrans of the human body. In this module,
the decoder processes the features fbackbone as contextual in-
put, iteratively updating the global translation parameters.
The update formula in each iteration is given by:

Γtrans
i+1 = Ψ · tout + Γtrans

i , (2)

where Γtrans
i represents the global translation parameters

at time step i, and Ψ is the weight matrix for the update.
This decoding process enables the model to capture a com-
plete motion trajectory in the global coordinate system.

Loss. The total loss function not only includes the 3D key-
point loss Lkp3d and 2D keypoint loss Lkp2d but also incor-
porates the SMPL parameter loss Lsmpl and the global tra-
jectory loss Ltraj . Specifically, the 3D keypoint loss Lkp3d

measures the 3D error of the predicted keypoints, while the
2D keypoint loss Lkp2d measures the 2D projection error.
The orientation of the human body is strongly correlated
with pose, so in the SMPL parameter loss Lsmpl, we con-
catenate the orientation + pose together to form the param-
eters θ and the shape parameters β, which jointly supervise
the decoding. Finally, the global trajectory loss Ltraj con-
strains the translation parameters to within close distance
of ground truth positions. The specific losses are described
below.

The 3D keypoint loss Lkp3d minimizes the Euclidean
distance between the predicted 3D keypoints k3d,pred

i and
ground truth k3d,gt

i , calculated over all frames i as:

Lkp3d =
1

N

N∑
i=1

∥∥∥k3d,pred
i − k3d,gt

i

∥∥∥2
2
, (3)

where N is the total number of frames. To remove global
position offsets, both predicted and ground-truth 3D key-
points are pelvis-aligned before computing the loss. Simi-
larly, the 2D keypoint loss Lkp2d supervises the projection
of keypoints into the image plane, defined as:

Lkp2d =
1

N

N∑
i=1

∥∥∥k2d,pred
i − k2d,gt

i

∥∥∥2
2
, (4)

where k2d,pred
i and k2d,gt

i represent the predicted and
ground-truth 2D keypoints for frame i, respectively. The
SMPL parameter losses Lsmpl

θ and Lsmpl
β supervise the

predicted pose parameters θpred
i and shape parameters βpred

i

by minimizing their squared errors with respect to ground

truth, formulated as:

Lsmpl
θ =

1

N

N∑
i=1

∥∥∥θpred
i − θgt

i

∥∥∥2
2
, (5)

Lsmpl
β =

1

N

N∑
i=1

∥∥∥βpred
i − βgt

i

∥∥∥2
2
. (6)

In addition, the global trajectory loss Ltraj ensures that
the predicted global translations Γpred

trans,i remain close to the
ground truth Γgt

trans,i, defined as:

Ltraj =
1

N

N∑
i=1

∥∥∥Γpred
trans,i − Γgt

trans,i

∥∥∥2
2
. (7)

The total loss is then formulated as:

L = w3D · Lkp3d + w2D · Lkp2d + wθ · Lsmpl
θ

+wβ · Lsmpl
β + wtraj · Ltraj ,

(8)

where the weights {w3D, w2D, wθ, wβ , wtraj} are hy-
perparameters that balance the contributions of each loss
term. These components collectively drive the optimiza-
tion process by supervising the keypoints, pose, shape, and
global translations to ensure accurate motion estimation.

D.3. Post-processing Details

Researches [12, 13, 20] have shown that a post-processing
stage can be used to improve the output motion recovery
results. Following these approaches, we employ a post-
processing stage to optimize the output pose from SCD
stage(the main text Sec.4.1). One distinct advantage of
ClimbingCap is that the output results from the pose de-
coding stage can be rigidly transformed between the cam-
era and world coordinate systems. Thanks to the LiDAR
modality, the point cloud contains 3D information in the
world coordinate system. The poses obtained from the SCD
stage are converted from the camera coordinate system to
the world coordinate system through the inverse extrinsic
matrix Ω−1

w2c.
The post-processing stage consists of three Losses:

LLWD, LSDS , and LV LR. Specifically, LLWD assigns dif-
ferent weights to the vertices of different parts of the climb-
ing human SMPL model (e.g., torso, arms, hands, feet) and
minimizes the weighted Chamfer Distance (CD) between
the SMPL vertices and the ground-truth point cloud, for-
mulated as:

LLWD =
1

N

N∑
i=1

(
wmain · CD(vmain

i ,pi)

+warms · CD(varms
i ,pi)

+wends · CD(vends
i ,pi)

)
,

(9)



where CD(v,p) = 1
|v|

∑
v∈V minp∈P ∥v − p∥22, and

vmain
i ,varms

i ,vends
i represent the visible vertex groups for

torso, arms, and limb ends (feet and hands), respectively.
wmain, warms, wends are weights assigned to these groups, re-
flecting their relative importance in the optimization pro-
cess. For example, larger weights can be assigned to criti-
cal regions such as the torso (wmain) to ensure better align-
ment of the body with the ground-truth point cloud, while
smaller weights may be used for limb ends (wends) due to
their higher variability.

The second loss, LSDS , ensures smooth motion dynam-
ics by penalizing unnatural joint accelerations on the climb-
ing wall. For a sequence of joints ji ∈ R24×3 (where 24 is
the number of joints), the loss is defined as:

LSDS =
1

N − 2

N−1∑
i=2

max(0, ζ − ∥ji−1 − 2ji + ji+1∥2),

(10)
where ζ is the acceleration threshold, and N is the total

number of frames.
The third loss, LV LR, refines the temporal smoothness

of limb rotations by penalizing large rotational changes be-
tween consecutive frames. Given the axis-angle representa-
tion of pose parameters θi ∈ R23×3 for 23 joints, it is first
converted into a 6D representation ϕi ∈ R23×6 using:

ϕi = Rot6D(θi), (11)

where Rot6D(·) represents the conversion from axis-
angle to 6D rotation representation by extracting the first
two columns of the corresponding rotation matrix. The loss
is then computed as:

LV LR =
1

N − 1

N−1∑
i=1

∥ϕi − ϕi+1∥1 . (12)

Finally, the combined loss for the post-processing stage
is defined as:

Lpost = wLWD ·LLWD+wSDS ·LSDS+wVLR ·LV LR, (13)

where wLWD, wSDS, wVLR are hyperparameters control-
ling the contribution of each loss term. The global pose
optimization is performed using the Adam [8] optimizer,
enhancing pose alignment, motion smoothness, and tempo-
ral consistency.

D.4. Semi-supervised Framework Details

Compared to ground-level motion datasets [5, 9, 15], the
scale of labeled climbing motion data is relatively small.
Solely relying on labeled climbing motion data may be in-
sufficient to train robust models. Unlike labeled climbing
motion data, collecting unlabeled climbing motion data is
more cost-effective. The AscendMotion dataset contains

a substantial amount of unlabeled data, derived from real
climbers performing highly challenging climbing motions.
These data can be used to further improve HMR models.

Research in the object detection community [16, 17,
21] has demonstrated that using a teacher-student semi-
supervised training framework can effectively enhance the
performance of object detection models. Drawing a paral-
lel to AscendMotion, we hypothesize that adopting such a
semi-supervised framework for HMR can effectively lever-
age the unlabeled data in the dataset. In this work, we define
the models trained after the SCD and post-processing stages
as teacher models (represented by the green box in the main
text Fig.4).

During training, by inputting unlabeled dual-modal data
into the teacher network, we obtain accurate outputs in the
global coordinate system, including β, θ, δw, and Γw.
These globally post-processed pseudo-labels are referred to
as high-confidence pseudo-labels. In the next step, these
pseudo-labels, together with the input video, are used to
train the student network.

The student model (represented by the red box in the
main text Fig.4) clones the parameters of the teacher model.
During semi-supervised training, the teacher model esti-
mates pose labels from unlabeled motion data, which are
then used as pseudo-labels to further train the student
model. As shown in the experimental section, the perfor-
mance of HMR can be further improved by utilizing the
semi-supervised training framework.

E. Dataset: AscendMotion Details
AscendMotion is a multimodal dataset designed specifi-
cally for capturing the intricate movements of climbers in
various climbing scenarios. To create this dataset, we re-
cruited 22 experienced climbers to perform various climb-
ing routes across 12 different climbing walls, including both
indoor and outdoor settings. The dataset features high-
resolution annotations of human poses and trajectories, en-
suring a comprehensive understanding of climbing dynam-
ics. The motions collected in AscendMotion are from
skilled climbers. These participants consent to the use of
their recorded data for scientific purposes. Rock climbing
is highly challenging for unskilled climbers, who can fall
easily from the rock, whereas skilled climbers can climb on
the rock with faster speed and longer duration, and grasp
more rock holds than amateur players.

As illustrated in the main text Fig.3, AscendMotion
provides rich annotations, including 3D human body key
points, limb trajectories, and detailed scene reconstruction,
which are crucial for studying human motion in climbing
scenes. The main text Table.1 highlights the unique aspects
of AscendMotion in comparison to other publicly available
human motion datasets, showcasing its focus on climbing
activities.



E.1. Annotation Pipeline

To ensure the quality of the dataset, we implemented an au-
tomatic annotation pipeline that utilizes the motion charac-
teristics inherent to climbing, such as spatial consistency
and contact dynamics, to refine pose and trajectory annota-
tions frame by frame. We further enhance annotation qual-
ity through manual verification and correction processes, as
described in the main text Fig.3. Here are some more de-
tails.

Scene Reconstruction. Unlike actions that only interact
with flat ground or stairs, rock climbing motions are com-
plex and anti-gravity. We believe that correct and high-
precision scene reconstruction is important for the annota-
tion method. Accurately reconstructed scenes play a vital
role in restoring the interaction between the human body
and the scene. Fig. 1 shows the accurately reconstructed
scene in AscendMotion. The upper and lower modules
show part of the horizontal scene and the vertical scene re-
spectively. We place a 5’7” human model in the wall to
compare the size of scene. All scenes in AscendMotion are
collected from real rock climbing venues. The gym man-
ager agrees to use the data for scientific research. For each
sequence collection, we scan the scene once to ensure the
correctness of the scene in the sequence.

First, we use the static scanning device Trimble X7 to
perform multi-site scans of the collected rock walls. Each
scene includes 10 million centimeter-precision color point
clouds. Then, we crop the rock walls used in the current
sequence to ensure that each scene has a million-level re-
fined point cloud. Finally, we perform Poisson Reconstruc-
tion [6, 7] on all scenes to obtain geometric patch models
that adapt to physical contact.

Time Synchronization. The time among RGB camera
and LiDAR are synchronized via Precision Time Protocol
(PTP). We employ CollShark Auto 66 unit as the master
clock, and its sends PTP slaves clocks to the RGB camera
and LiDAR. The time of IMU MoCap is post-synchronized
with the LiDAR and RGB through anchor frames. As
shown in the main text Fig.2, we use the Jetson AGX devel-
opment board as the basis, use Switches and Master Clocks,
and design accurate multimodal trigger signals to synchro-
nize the LiDAR and RGB Camera in hardware. The IMU
human motion capture system post-synchronize with the Li-
DAR through the anchor frame.

Calibration. First, the LiDAR point cloud are registered
with high-precision scanned-scenes. Next, the coordinate
of LiDAR is treated as the world coordinate. The IMU
measurements are transformed into the world coordinate
through a calibration matrix. Finally, we perform frame-
level calibration among RGB, LiDAR and IMU. Next, for
each frame, we isolate human body point clouds and derive
human poses based on them. The movement of the human

body in the world coordinate system {W} is represented
as MW = (TW , θW , β). The IMU provides T I and θI

in M I = (T I , θI , β), and the initial pose θW = RWIθ
I

is computed with a rough calibration matrix RWI from the
IMU to the world coordinates. Given the limited translation
accuracy of the IMUs, we use the hip center in the point
cloud as TW . Finally, we complete frame-level temporal
synchronization and spatial calibration across all modali-
ties.

E.1.1 Multi-stage Global Optimization Detail

AscendMotion use the translation T and pose θ provided by
the IMU MoCap as the initialization of annotation labels,
and performs multi-stage global optimization.

To achieve accurate and natural human motion data con-
sistent with the scene, we apply two loss functions: the
Global Refit Loss LGR and the Scene Touch Loss LST.
These losses optimize the global pose and trajectory to bet-
ter align with scene constraints.

Global Refit Loss LGR : This loss, based on the Chamfer
distance, calculates the geometric discrepancy between the
SMPL model vertices and the human body point cloud, us-
ing distance threshold filtering and different weighting for
body parts to ensure accurate matching. For each frame,
given the set of visible SMPL vertices V ⊂ R6890×3 and
the point cloud P ⊂ RN×3, we define the loss as follows:

LGR =
∑
vi∈V

∑
pj∈P

[
I(∥vi − pj∥2 < d2trunk) · f(∥vi − pj∥2)

+I(∥pj − vi∥2 < d2close) · g(∥pj − vi∥2)
]
,

(14)

where dtrunk denotes the maximum distance threshold
used for filtering, dclose represents the minimum distance
threshold for close matching, f(x) = 0.3x2

x2+0.02 is a cus-
tom distance filtering function applied for smoothing, and
g(x) is the square root function applied for close-matching
points.

The indicator function I(∥vi−pj∥2 < d2trunk) returns 1 if
and only if ∥vi − pj∥2 < d2trunk, indicating that the distance
between vi and pj is within the threshold dtrunk; otherwise,
it returns 0. Similarly, I(∥pj − vi∥2 < d2close) returns 1 if
∥pj − vi∥2 < d2close, indicating that the distance between pj
and vi is within the threshold dclose; otherwise, it returns 0.
These indicator functions ensure that only vertex-point pairs
meeting the specified distance criteria contribute to the loss.
Different weights are assigned to major body parts, such as
the torso and limbs, to balance their influence in the overall
loss. This variation of the Chamfer distance ensures precise
global alignment between the SMPL model and the point
cloud, enhancing pose-fitting accuracy.



Scene Touch Loss LST: This loss measures the penetra-
tion depth between SMPL vertices and the scene mesh, pre-
venting unrealistic overlap between the model and the en-
vironment. Given the scene mesh vertices Q and their cor-
responding normal vectors N , we compute the nearest dis-
tance and penetration depth for each SMPL vertex vi ∈ V ..
If the penetration depth, η(vi), is negative, it is included in
the loss:

LST = −
∑
vi∈V

I(η(vi) < 0) · η(vi) (15)

where η(vi) = (vi − qj) · nj , qj ∈ Q is the closest
mesh vertex to vi, and nj is the corresponding normal vec-
tor. When η(vi) < 0, it indicates penetration of vertex vi
into the scene mesh. This penetration depth contributes to
the scene touch loss, effectively reducing unrealistic inter-
sections.

The indicator function I(η(vi) < 0) returns 1 if η(vi) <
0, indicating that the vertex vi has penetrated the scene
mesh; otherwise, it returns 0, meaning there is no contri-
bution to the loss from that point. When the penetration
depth η(vi) is negative, it indicates that the SMPL vertex vi
has intersected the scene mesh, and this depth contributes
to the scene touch loss, effectively reducing unrealistic in-
tersections.
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