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Supplementary Material

6. Experiment Settings

This section provides detailed implementation settings to
facilitate reproducibility, including dataset descriptions,
evaluation metrics, and model architecture specifications.

6.1. Datasets

Scene Generation. Our experiments are primarily con-
ducted using the nuScenes [3] dataset. For scene generation
tasks, we leverage the nuScenes-OpenOcc dataset, which
provides comprehensive occupancy annotations and BEV
maps, supporting the evaluation of both static and dynamic
elements. Additionally, we employ GPT-4V to caption cor-
responding RGB images and generate textual scene descrip-
tions as prompts for conditional generation.

Video Generation. Following prior works [13, 28, 44],
we use a standard split of 700 scenes for training and 150
scenes for validation. Each sequence, recorded at 12 Hz,
spans approximately 20 seconds, with annotations provided
at 2 Hz. To train higher-frequency models, we interpolate
sequences to produce 12 Hz annotations. Fine-grained con-
trol over scenes and actors is achieved by using GPT-4V to
generate detailed scene and object captions. These captions
provide high-level semantic descriptions and ensure precise
guidance during generation. To maintain consistency, each
foreground actor is assigned a unique ID, ensuring appear-
ance coherence across frames.

Open-loop and Closed-loop Settings. @ We support
two map environments, singapore-onenorth and boston-
seaport, aligned with the DriveArena platform [51]. A total
of 100 simulation sequences are defined for validation, en-
abling the evaluation of driving agents in both open-loop
and closed-loop modes.

6.2. Evaluation Metrics

Frechet Video Distance (FVD). This metric evaluates the
visual quality and temporal consistency of generated video
clips, following established benchmarks [13, 45].

Mean Average Precision (mAP) and NuScenes Detection
Score (NDS). We use mAP and NDS to measure detection
accuracy on generated data, validating the fidelity of the
simulated environment.

Progressive Driving Metric Suite (PDMS): Initially pro-
posed by NavSim [8], PDMS evaluates trajectory perfor-
mance at each timestep using metrics such as No Colli-
sions (NC), Drivable Area Compliance (DAC), Time-to-
Collision (TTC), and other relevant indicators.

Arena Driving Score (ADS): ADS [51] combines
trajectory-level metrics (e.g., PDMS) with route completion

(R.), defined as the percentage of total route distance com-
pleted (R. € [0,1]). ADS is particularly suited for closed-
loop evaluation as it accounts for safety and consistency.
For instance, collisions or road deviations terminate sim-
ulations, making ADS a reliable measure of agent perfor-
mance.

6.3. Model Details

OccDreamer. The scene tokenizer Fy3} follows [41, 58]
and is trained on 3D occupancy data of size 192 x 192 x 16.
It compresses the input S}, into a latent space Z°* of size
48 x 48 x 4 with 8 channels. A pre-trained encoder [16, 17]
processes the BEV map to match the latent feature resolu-
tion.

For the denoiser € and ControlNet branch €7, we em-
ploy 3D U-Net [16, 17] as the backbone. Training in-
volves 60k iterations on 8 NVIDIA A800 GPUs. For scene
extension, € is frozen, and e;; is fine-tuned with addi-
tional channels to condition on partial scenes. During in-
ference, DDIM [17] with 100 sampling steps is used, and
the classifier-free guidance scale is set to 7.

VideoDreamer. Based on the OpenSora codebase [60],
our implementation initializes with pre-trained weights and
is trained for 30k iterations on 8§ NVIDIA A800 GPUs.
The 4D occupancy encoder Fyho™ adopts the architecture
from [41, 58], extracting embeddings from 4D occupancy

data. The number of DiT blocks is set to 26 with N = 13.

During inference, rectified flow [60] is used with a
classifier-free guidance scale of 7.0 and 30 sampling steps
to generate videos at resolutions from 480p to 1080p. For
open-loop and closed-loop evaluations, short videos of 4
frames are generated with f = 3 reference frames. For
longer sequences, 16-frame videos are generated with f =
4 reference frames to ensure temporal consistency.

6.4. Simulation Settings.

In our implementation, the traffic flow engine [46] operates
at a frequency of 10 Hz, while the control signals are set
to 2 Hz, following the setup in DriveArena [51]. Every 0.5
simulation seconds, the 4D driving world updates its state
and renders multi-view semantic maps as conditions for the
VideoDreamer model. VideoDreamer uses the last 3 frames
as reference images to generate 512x960 images, which are
subsequently resized to 224x400 to serve as input for the
driving agent.



mloU(yy videos. The results highlight the superior performance of

66.38 our method in generating high-quality, visually coherent

driving scenarios.
We also perform an ablation study with a "w/o W’ con-

Methods Downsampling Scale | IoU 4
OccWorld [58] H/AxW/4xT 62.29
OccSora [41] H/8x W/8xT/8 274 37
DrivingSpheresn H/4xW/4AxT 93.1 73.89
Semcity [22] - 95.8 76.9
DrivingSpheresp H/4x W/4 97.2 86.81

figuration, which conditions video generation solely on 2D
sketches without incorporating occupancy data. This setup

Table 5. Quantitative results of Occupancy Tokenizer for Oc-
cupancy Reconstruction. DrivingSphere,;, indicates Fype® in
Sec. 3.2 while DrivingSphere,p, indicates Fyag in Sec. 3.1.

Methods FVD | mAP() | NDS(y
RealData [3] - 62.29 66.38
MagicDrive [13] - 12.30 23.32
DriveDreamer [43] 340.8 - -
Panacea [45] 139 11.58 22.31
Drive-WM [44] 122.7 | 20.66 -
DrivingSphere wio W | 121.4 17.34 26.21
DrivingSphere 1034 | 22.71 31.19

Table 6. Comparison of SOTA video generation methods on
nuScenes validation set. We use BEVFusion as the 3D detector.
‘'w/o W’ indicates that the model uses no occupancy but uses the
2D sketch as the condition.

7. Additional Quantitative Results

7.1. Scene Reconstruction

To validate the performance of our Occupancy VAE, we
conduct scene reconstruction experiments on the nuScenes
validation set, evaluating both 3D and 4D scene reconstruc-
tion. These tests provide a detailed analysis of the model’s
ability to represent and reconstruct complex spatial and
temporal elements within driving environments.

As shown in Tab. 5, for 3D scene reconstruction,
our 3D Occupancy VAE significantly outperforms SemC-
ity [22], which serves as the occupancy tokenizer baseline in
Sec. 3.1. The superior performance highlights the enhanced
encoding and reconstruction capabilities of our method.

For 4D scene reconstruction, we benchmark against Oc-
cWorld and OccSora, two state-of-the-art methods for large-
scale 4D occupancy modeling. The 4D occupancy VAE will
act as the encoder to extract the global embedding of oc-
cupancy data in Sec. 3.2. These architectural components,
coupled with finely tuned experimental parameters, enable
our model to capture fine-grained spatial and temporal de-
tails, ensuring accurate reconstruction of both static and dy-
namic elements in the scenes.

7.2. Video Generation

To validate the capabilities of VideoDreamer, we bench-
mark our method against state-of-the-art video generation
approaches using aligned experimental settings for fairness.
As shown in Tab. 6, we use BEVFusion as the detector
to quantitatively assess the visual fidelity of the generated

isolates the impact of the 4D driving world on the gener-
ation process. The results clearly show a significant en-
hancement in visual fidelity with occupancy data integra-
tion, emphasizing its crucial role in improving the realism
and consistency of generated video sequences. These find-
ings underscore the robustness of our framework in produc-
ing visually accurate driving videos and its effective use of
multi-modal conditions.

8. Additional Visualtion Results

In this section, we provide more quality visualization re-
sults and a video is also attached in the materials for better
visualization of temporal results.

8.1. Scene Generation

In Fig. 7, we compare occupancy scenes generated by Driv-
ingSphere, SemCity [22], and real-world data. The results
illustrate that our method achieves substantially higher fi-
delity than SemCity, closely mirroring the structural and se-
mantic layouts of real data. Unlike the unconditional gen-
eration of SemCity, our approach leverages conditions to
align with real road structures and semantic layouts, under-
scoring its capability for precise scene reconstruction and
realistic understanding.

In Fig. 8, we illustrate the composited driving world cre-
ated for a specific area. By employing the Scene Generation
and Scene Extension strategies outlined in Sec. 3.1, we con-
struct a large-scale static background with seamless spatial
consistency.

8.2. Video Generation

Controllable Video Generation Fig. 9 showcases video
generation results across 40 frames, highlighting Driving-
Sphere’s ability to model occlusions, depth relationships,
and non-direct traffic participants such as buildings, trees,
and landmarks. Our model uses occupancy data for pre-
cise control over both static and dynamic elements, ensur-
ing consistent and realistic scene representation over time.
These capabilities make our framework robust for gener-
ating complex driving environments and suitable for real-
world applications requiring detailed scene understanding.

Simulation Results As demonstrated in Fig. 11, we com-
pare the generated simulations of DriveArena [51] and
DrivingSphere on the same route. The results clearly show
that DrivingSphere outperforms DriveArena in terms of
temporal and spatial consistency, further establishing its su-
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Figure 7. Comparison between Semcity [22], DrivingSphere and Real Data.

Figure 8. Composited Driving World in a specific area. We adpot Scene Generation and Scene Extention in Sec. 3.1 to obtain a big static
background.



Figure 9. Generated Video sequnences in nuScene. Top: Occupancy condition, Middle: Our generated video, Bottom: Ground truth
video sequence.

periority in generating coherent and realistic driving simu- demo, we present ultra-long video generation on private
lations. data. This example generates 600 continuous frames at 10

. . . Hz over a 1-minute duration, showcasing DrivingSphere’s
Long-term Video Generation In an attached video & &op
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Figure 11. Comparison with DriveArena [51]. The visual output of DriveArena and DrivingSphere on the same route demonstrates

superior temporal and spatial consistency in generated simulations.

capacity for maintaining high fidelity and consistency over
extended temporal horizons.

9. Limitations and Future Work

Efforts to optimize the computational efficiency of 4D oc-
cupancy and video generation pipelines will be central to
future work. Techniques like model pruning, quantization,
and adaptive sampling will be explored to minimize com-
putational costs while maintaining high fidelity. Real-time

rendering capabilities will also be prioritized to facilitate
online validation.

Expanding environmental diversity in simulations will
be another focus area. Future enhancements will include
modeling extreme weather conditions (e.g., heavy rain,
snow, fog), varying road geometries, and rare traffic sce-
narios. These improvements aim to enable more compre-
hensive robustness testing for autonomous driving systems
under challenging and diverse conditions.
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