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1. Theoretical Supplement
1.1. Differential Curve in High Dimension

In high-dimensional space, based on the definition of differ-
ential curves, we present the derivative terms of differential
curves in high-dimensional space:
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where £(s) is the curvature of high-dimensional slight curve
7(s). The desirable properties of this differential curve can
be extended to various tasks.
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1.2. Convergence Analysis

We provide the proof of convergence for the differential
curve. First, a convergence analysis is conducted at s*. Ex-
panding r(s) at s* using a Taylor expansion and truncating
at the first order yields the following expression:

r(s) =r(s") + -

We obtain the |r(s) — r(s*)| as follows:
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We can derive the following formula:
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From the above equation, the following can be deduced:
|r(s) —r(s*)| <e=10d,e>0 (6)

This implies that when the condition (Eq. (5)) is satisfied,
r(s) will convergence to 7(s*).

2. Additional Framework Analysis

2.1. Model parameters.

Tab. 1 illustrates that the model performance is not strongly
correlated with parameters. Most other methods employ
recurrent strategies to increase performance, leading to
smaller parameter sizes but increased FLOPs.



Table 1. Model Information.

Model Information
Method #params FLOPs time (s)
LDMVFI[1] | 439M 9.9T 8.48
VIDIM [3] 357TM 10.8T 9.28
QVI[9] 19M 13T 0.97
PRF [4] 114M 32T 0.76
Ours 88M 0.12T 0.124

Table 2. The method name with (G) denotes the generative model.
The method name with (R) denotes the reconstruction model.

Method LPIPS | tOF (time-axis) | PSNR
LDMVFI [1](G)  0.1356 17.28 26.301
VIDIM [3](G) 0.1495 20.11 24.07
QVI [9](R) 0.1986 8.91 32.54
Ours (R) 0.1683 7.63 35.54

2.2. Limitations and failures

It is worth noting that the processing ability of the DC-
BMEFI for discontinuous motion scenes needs to be im-
proved, as shown in Fig. 1.

Figure 1. Failure cases in discontinuous motion.

3. Additional Framework Results
3.1. Comparison with DDPM-based Methods

The diffusion model uses stochastic differential equations
to generate video. The disadvantage is that the object’s mo-
tion in the generated video lacks physical constraints, such
as motion continuity. Video frame interpolation is to recon-
struct the real continuous motion trajectory.

For quantitative measurements, we tested some of the
generative and reconstruction models on the UCF101 [5]
dataset. Please see the table below: As we can see from
Tab. 2, the generative model performs worse than the re-
constructed model on the motion continuity metric (tOF).

3.2. More Visual Results

Fig. 2 presents the video frame interpolation results in the
depth variations scene. Fig. 3 and Fig. 4 show more video
multi-frame interpolation results. We have provided the 3D
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Figure 2. (a) Depth variation leads to changes in object size. (b)
and (c) present the multi-frame video interpolation results of the
3D-based and 2D-based frameworks, respectively.

visualization of the interpolation results in an anonymous
Git link https://baronzaomingyan.github.io/DC-BMVT/.

4. Additional Ablation Studies

To verify the impact of different backbones on the overall
framework, We primarily evaluate this by replacing the ViT
in UBNet and substituting the Flownet in MPNet.

4.1. UBNet

To evaluate the impact of different backbones on the trans-
formation of frames into motion-space point maps and their
influence on video frame interpolation. We replaced ViT
with MoGe [7], DUSt3R [8], and conducted evaluations on
the RBI test set. The results presented in Tab. 3 demonstrate
that varying backbones have a negligible effect on the direct
outcomes of video frame interpolation.

Table 3. The effect of various ViT configurations on blurry video
frame interpolation.

ViT MoGe [7] DUSIR [8] | PSNR(dB) MiD (})

(a) v 31.03 76
(b) v 30.99 82

Table 4. The effect of different 2D optical flow configurations on
blurry video frame interpolation.

FlowNet IFNet [2] RAFT [0] ‘ PSNR(dB) MiD (})

(a) v 31.03 76
(b) v 31.00 79
4.2. MPNet

To evaluate the effect of various 2D optical flow backbones
as the foundation for MPNet and their influence on video
frame interpolation, we employ IFNet [2] and RAFT [6] as
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Figure 3. In the multi-frame video interpolation results, the top row presents the performance of the 3D-based framework, while the bottom
row showcases the results of the 2D-based framework.

Figure 4. The multi-frame video interpolation results based on the 3D framework are presented.

the 2D optical flow models for MPNet. We conduct evalu-
ations on the RBI test set. As shown in Tab. 4, the results
suggest that different 2D optical flow models have a neg-
ligible impact on the motion-depth changes in video frame
interpolation.
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