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A. Derivation of Eq. (5) and Eq. (6)
A.1. Derivation of Eq. (5)
The optimization problem, as defined in Eq. (4) (main paper),
is given by:

Θ⋆ = argmax
Θ

Eq∼P̂q [R
q]. (1)

To optimize Eq∼P̂q [Rq] using policy gradients, it is neces-
sary to compute its gradient with respect to Θ. Applying the
property ∂

∂Θp(x; Θ) = p(x; Θ) ∂
∂Θ ln p(x; Θ), we derive:

∂

∂Θ
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q] = Eq∼P̂q

[
Rq ∂

∂Θ
ln P̂q

]
. (2)

The expectation is approximated by drawing Q samples:

∂
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Q

Q∑
q=1

Rq ∂

∂Θ
ln(P̂q). (3)

A.2. Derivation of Eq. (6)
Starting from Eq. (5) (main paper) and substituting Eq. (3)
(main paper), the derivation proceeds as follows:
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(4)

B. MoRa vs. Supervised Loss in PointDSC
We analyze the similarities and advantages of the MoRa loss
compared to the supervised losses used in PointDSC [1].
This comparison demonstrates that MoRa loss provides a
unified formulation that does not rely on explicit transforma-
tion labels.

B.1. First-order MoRa vs. Node-wise Supervision

Node-wise Supervision (Lclass). The node-wise supervision
loss Lclass in PointDSC [1] is formulated using binary cross-
entropy (BCE):

Lclass = BCE(P,w∗)

= − 1

N

N∑
i=1

[w∗
i log(Pi) + (1−w∗

i ) log(1−Pi)] ,

(5)
where P is the predicted confidence of correspondences. w∗

represents ground-truth labels, indicating whether a corre-
spondence ci is an inlier (1) or outlier (0). The loss for an
individual correspondence is given by:

[Lclass]i =

{
− log(Pi), if w∗

i = 1

− log(1−Pi), otherwise
. (6)

Optimizing Lclass increases the confidence of inliers and
reduces that of outliers.

Our MoRa(1). The first-order MoRa loss is defined as:

L(1) = −
N∑
i=1

log(Pi) ·Ei, (7)

where Ei represents the potential energy of correspondence
ci. Typically, inliers have higher energy values than outliers.
The loss for an individual correspondence is:

[L(1)]i = − log(Pi) ·Ei. (8)

By optimizing L(1), correspondences with higher potential
energy (primarily inliers) are prioritized, naturally improving
their sampling probabilities and confidence values.

B.2. Second-order MoRa vs. Edge-wise Supervision

Edge-wise Supervision (Lsm). The edge supervision loss
Lsm in PointDSC [1] is defined as:

Lsm =
1

N2

N∑
i=1

N∑
j=1

(
γij − γ∗

ij

)2
, (9)

where γ∗
ij = w∗

i ·w∗
j indicates whether both correspondences

ci and cj are inliers. γij is the predicted feature similarity
between ci and cj , computed as:

γij = max

(
1− 1

σ2
f

∥Fi − Fj∥2, 0

)
, (10)



where Fi and Fj are feature descriptors, and σf is a parame-
ter to control sensitivity to feature difference [1]. This loss
encourages higher feature similarity between inliers while
reducing similarity between outliers.

Our MoRa(2). The second-order MoRa loss is defined as:

L(2) = −
N∑
i=1

N∑
j=1

log(P
(2)
ij ) ·E(2)

ij , (11)

where E
(2)
ij is the potential energy of a correspondence pair

{ci, cj}, which is typically higher for inlier pairs. By op-
timizing L(2), inlier pairs with higher potential energy are
prioritized, enhancing feature similarity in line with the ob-
jectives of Lsm.

B.3. Summary of Key Findings
1. Alignment with PointDSC Objectives:

• MoRa(1) aligns with Lclass when optimizing corre-
spondence sampling probabilities.

• MoRa(2) aligns with Lsm when optimizing feature sim-
ilarity.

2. Generalized Formulation:
• MoRa provides a unified optimization framework, inte-

grating both node and edge objectives.
• MoRa eliminates the need for explicit transforma-

tion labels, enabling unsupervised learning.

C. Additional Implementation Details

C.1. Second-order MoRA Loss Computation

The MoRA(2) loss (Eq. 12 in the main paper) requires defin-
ing P

(2)
i,j , which quantifies the probability of sampling the

correspondence pair {ci, cj} simultaneously. This proba-
bility is obtained by applying dual-softmax to feature sim-
ilarity [2, 5], reflecting the intuition that correspondences
with higher similarity are more likely to co-occur in sam-
pling. Given feature embeddings F ∈ RN×D where D is the
feature dimension, the computation is as follows:
1. Compute the similarity matrix:

S = FFT . (12)

2. Apply dual-softmax on S to achieve probabilistic normal-
ization. This produces two matrices, Srow ∈ RN×N and
Scol ∈ RN×N , defined as:

Srow
i,: = Softmax(Si,:), Scol

:,j = Softmax(S:,j). (13)

3. Combine the row-wise and column-wise softmax results,
we get:

P(2) = Srow · Scol. (14)

C.2. Reward Score Normalization
To evaluate the quality of sampled correspondences, we
use the inlier ratio as the reward signal, as discussed in
L226–L227 of the main paper. A higher inlier ratio indicates
better sampling quality. However, its absolute value varies
significantly across point cloud pairs, introducing bias: pairs
with inherently higher-quality correspondences (i.e., higher
inlier ratios under the ground-truth transformation) naturally
achieve better scores, thereby overshadowing those with
lower-quality correspondences. To mitigate this imbalance,
we normalize the reward as:

R̂q =

{(
Rq−τIR

max(Rq)−τIR

)α
, if Rq ≥ τ IR

0, otherwise
, (15)

where τ IR is the inlier ratio threshold and α controls the
sharpness of the normalization.

C.3. Details of Our Subset Sampler
We provide additional implementation details regarding the
subset sampling strategies employed in our method.

Ours+PSAC. Following the RANSAC [4] paradigm, we
execute 4 million iterations [6]. In each iteration, three cor-
respondences are randomly sampled from the full set of
correspondences C, guided by our sampling probability dis-
tribution P. This strategy ensures that correspondences with
higher confidence scores are more likely to be selected.

Ours+SM. SM refers to the Seed Mechanism in PointDSC.
This approach begins by identifying reliable and spa-
tially well-distributed correspondences, designated as seeds,
guided by P. Subsequently, correspondences that are consis-
tent with these seeds are selected based on feature similarity.

Ours+SC2. SC2-PCR [3] performs subset sampling by first
selecting correspondence seeds based on the leading eigen-
vector of the similarity matrix, followed by an SC2-based
consensus set search. In contrast, our method deviates from
this approach by not using the leading eigenvector for sam-
pling, instead leveraging our P for correspondence seeds
selection.

C.4. Details of Evaluation Metrics
To thoroughly assess the performance of our proposed
method, we employ the following evaluation metrics:

Translation Error (TE). Translation Error quantifies the de-
viation of the estimated translation vector t̂ from the ground
truth translation vector t∗. It is computed as:

TE(t̂) = ∥t̂− t∗∥2, (16)

where ∥ · ∥2 represents the Euclidean norm.

Rotation Error (RE). Rotation Error measures the angular
discrepancy between the estimated rotation matrix R̂ and



Dataset RANSAC Ours+PSAC PointDSC Ours+SM SC2-PCR Ours+SC2

FP
FH 3DMatch 66.10(3123ms) 72.21(265ms) 77.57(98ms) 81.39(98ms) 83.72(64ms) 83.9(132ms)

KITTI 74.41(4321ms) 83.39(271ms) 98.31(84ms) 99.13(84ms) 98.93(71ms) 99.13(141ms)

FC
G

F 3DMatch 91.44(3081ms) 92.79(267ms) 92.85(98ms) 93.41(98ms) 93.28(68ms) 93.65(129ms)

KITTI 80.36(4471ms) 95.79(271ms) 97.66(84ms) 98.1(84ms) 97.76(71ms) 98.1(142ms)

Table 1. RR (%) and running time (ms) comparison.

the ground truth rotation matrix R∗. It is defined as:

RE(R̂) = arccos

Tr
(
R̂TR∗

)
− 1

2

 , (17)

where Tr(·) denotes the trace of a matrix.

Registration Recall (RR). Registration Recall evaluates
the proportion of successful registrations, where success
is defined as achieving both RE and TE below predefined
thresholds. To ensure robustness against randomness, each
registration process is repeated 20 times, with the average
performance reported as the final metric.

D. Inference efficiency
Tab. 1 reports running time and RR results on four datasets.
Ours+PSAC surpasses RANSAC in both speed and RR, and
Ours+SM outperforms PointDSC in RR and matches its
speed. Though Ours+SC2 is slightly slower than SC2PCR,
it achieves better RR.

E. Qualitative Results
In this section, we present cases where comparative methods
fail to achieve successful registrations, while our method
consistently produce highly accurate results, as illustrated in
Figs. 1-3.
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RE: 130.21°
TE: 3.23cm

RE: 45.32°
TE: 0.55cm

RE: 2.70°
TE: 3.12cm

RE: 3.30°
TE: 3.17cm

#N: 4447

#IR: 1.93%

RE: 140.62°
TE: 392.62cm

RE: 2.30°
TE: 5.10cm

RE: 5.34°
TE: 19.40cm

#N: 2841

#IR: 3.81%

RE: 2.31°
TE: 5.51cm

RE: 172.84°
TE: 2.20cm

RE: 1.75°
TE: 5.72cm

RE: 2.61°
TE: 7.83cm

RE: 79.46°
TE: 224.31cm

RE: 133.50°
TE: 49.41cm

RE: 2.60°
TE: 7.42cm

RE: 5.26°
TE: 23.87cm

#N: 6217

#IR: 3.96%

RE: 145.56°
TE: 343.12cm

#N: 4231

#IR: 1.18%

RE: 178.64°
TE: 3.56cm

RE: 161.9°
TE: 128.37cm

RE: 1.15°
TE: 4.18cm

#N: 6128

#IR: 3.31%

RE: 176.07°
TE: 2.16cm

Figure 1. Qualitative comparison on 3DMatch. Red and green represent failed and successful registrations, respectively.



(1) PointDSC (3) Ours+SM(2) MAC (4) Ours+SC2Correspondences
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Figure 2. Qualitative comparison on KITTI-20m. Red and green represent failed and successful registrations, respectively.



(1) SC2-PCR (3) Ours+SM(2) MAC (4) Ours+SC2Correspondences
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Figure 3. Qualitative comparison on KITTI-30m. Red and green represent failed and successful registrations, respectively.
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