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6. Complete derivation
6.1. Complete derivation of Eq. (1)

1

|W|
∑
v∈W

[
DKL(qϕv (c | x(v))∥p(c | {x}))

]
=

1

|W|
∑
v∈W

[ ∫
qϕv

(c | x(v))
(
log qϕv

(c | x(v))

− log p (c | {x})
)
dc
]

=
1

|W|
∑
v∈W

[ ∫
qϕv

(c | x(v))
(
log qϕv

(c | x(v))

− log p({x}|c)− log p(c) + log p({x})
)
dc
]

=
1

|W|
∑
v∈W

∫
qϕv

(c | x(v)) log p ({x}) dc

+
1

|W|
∑
v∈W

[ ∫
qϕv

(c | x(v)) log
qϕv

(c | x(v))

p(c)
dc

−
∫

qϕv
(c | x(v)) log p({x}|c)dc

]
= log p({x}) + 1

|W|
∑
v∈W

[
DKL(qϕv

(c | x(v))∥p(c))

− Eqϕv (c|x(v))[log p({x}|c)]
]

(19)

6.2. Derivation process of Eq. (7)

I(c(v); s(v);x(v))

=I(c(v); s(v))− I(c(v); s(v)|x(v))

=I(c(v);x(v))− I(c(v);x(v)|s(v))
=I(s(v);x(v))− I(s(v);x(v)|c(v))

(20)

The above derivation is based on the definition of Interac-
tion Information [14, 25]. Next, we rearrange the first step
of the above derivation to obtain the following formula:

I(c(v); s(v))

=I(c(v); s(v);x(v)) + I(c(v); s(v)|x(v))

=I(c(v);x(v))− I(c(v);x(v)|s(v)) + I(c(v); s(v)|x(v))
(21)

where I(c(v);s(v)|x(v))=H(c(v)|x(v))−H(c(v)|x(v), s(v)) =
H(c(v)|x(v))−H(c(v)|x(v)) = 0.

Here, H(c(v)|x(v), s(v)) = H(c(v)|x(v)) arises
from the structural assumption of qϕv

(c(v)|x(v)) =

qϕv (c
(v)|x(v), s(v)) [14]. During training, the model disen-

tangles c(v) and s(v) using a disentangling loss (such as the
Ldisent used in this paper). The goal is to make the consis-
tent feature c(v) and the specific feature s(v) independent of
each other. This independence ensures that the extraction
of c(v) depends only on x(v), and is independent of s(v).
Continuing the derivation from Eq. (21), we obtain:

I(c(v); s(v))

=I(c(v);x(v))− I(c(v);x(v)|s(v))
=I(x(v); c(v))− I(x(v); c(v)|s(v))
=I(x(v); c(v)) + I(x(v); s(v))− I(x(v); c(v), s(v))

(22)

7. Additional implementation details
Our DRLS model is developed in Python using PyTorch
(version 2.0.1). Across all five datasets, we use a batch size
of 128, a learning rate of 0.001, and set de to 512. The
Adam optimizer is employed during training. In the second
phase, the pre-trained model is fine-tuned with a reduced
learning rate of 0.0001. All experiments are performed on
an NVIDIA RTX 4090 GPU and an Intel i9-13900K CPU.
In Fig. 3, we present the structures of the MLP encoder
(Fig. 3a), which is used to extract view feature distributions,
and the GIN encoder (Fig. 3b), which is used to extract label
semantic embedding distributions in our model.

8. Algorithm
The pseudocode for the DRLS model is provided in Algo-
rithm 1.

9. Additional experiments
9.1. Missing and training sample rates analysis

In Fig. 4, we show how the proposed method performs un-
der varying missing rates for views and labels. Specifically,
Fig. 4a demonstrates the model’s performance when the
view missing rate changes while the label missing rate re-
mains fixed at 50%. Likewise, Fig. 4b illustrates the impact
of different label missing rates on performance, keeping the
view missing rate constant at 50%. The results clearly indi-
cate that missing views and labels both degrade the model’s
effectiveness. As the missing rates increase, the perfor-
mance gradually declines. However, our model demon-
strates adaptability to arbitrary missing scenarios. By com-
paring Fig. 4a and Fig. 4b, we find that view missing has a
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(b) The structure of the GIN encoder

Figure 3. The detailed architectures of the MLP encoder and GIN
encoder, where Norm refers to batch normalization, Linear de-
notes a fully connected layer, and ⊕ represents the element-wise
addition used in residual connections.

more significant impact on the model’s performance, as the
model heavily depends on learning features from views.

In Fig. 5, we demonstrate the influence of different train-
ing sample rates on Corel5k (Fig. 5a) and Pascal07 (Fig. 5b)
datasets. The results show that as the number of training
samples increases, the model’s performance improves, indi-
cating that more training samples enhance the model’s per-
formance.

9.2. Analysis of feature contributions

To analyze the contributions of consistent and specific fea-
tures to model performance, Tab. 5 presents the impact
of the fused view-consistent feature c̄, the fused view-
specific feature s̄, and various feature fusion strategies on
the model’s performance.

As shown in Tab. 5, the fused view-consistent feature c̄

Algorithm 1: The training process of DRLS

Input: Incomplete multi-view data {x(v)}mv=1,
observable view set W , incomplete multi-label data y,
observable label set U , trade-off parameters α, β, and
γ, pre-training epochs t1, and second-phase training
epochs t2.
Output: The trained model parameters.

1 procedure Pretraining phase
2 Initialize the pretraining model parameters.
3 for t = 1 to t1 do
4 Use the encoders µϕv

(x(v)) and σϕv
(x(v)) to

compute qϕv
(c(v)|x(v)), and reparameterize to

derive c(v);
5 Use the decoder pθi(x

(i)|c(v)) to obtain self-view
and cross-view reconstructions x̂(i,v);

6 Update the model parameters using Eq. (3);

7 Save {qϕv (c
(v)|x(v))}mv=1;

8 end procedure
9 procedure The second phase

10 Initialize the model parameters, compute the
adjacency matrix A, and set H0 as the identity
matrix.

11 for t = 1 to t2 do
12 Reparameterize qϕv

(c(v)|x(v)) and qφv
(s(v)|x(v))

to obtain c(v) and s(v);
13 Use pϑv

(x(v)|c(v), s(v)) to obtain self-view
reconstructions x̂(v);

14 Compute p(c|{x}) using Eq. (5) and
reparameterize to obtain the fused feature c̄;

15 Compute the fused specific feature s̄ using
Eq. (10);

16 Use GINµ(H
0, A) and GINσ2(H0, A) to obtain

the semantic embeddings {hi}ki=1;
17 Reconstruct the adjacency matrix A by taking the

inner product of {hi}ki=1;
18 Use Eq. (11) to compute the fused feature z;
19 Obtain {ri}ki=1 using ri = ω(f(hi));
20 Perform feature selection with Eq. (16) and input

the selected features into the classifier to obtain
the predictions {pi}ki=1;

21 Compute the total loss L as described in Eq. (18)
and update the model parameters;

22 end procedure

contributes more than the fused view-specific feature s̄, and
the performance of using only multi-view consistent infor-
mation is inferior to that of fusing consistent and specific in-
formation. Furthermore, different feature fusion strategies
affect classification performance. Simply summing the fea-
tures results in insufficient interaction between them, which
negatively impacts the model’s performance. Applying a
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Figure 4. The experimental results of DRLS on Corel5k dataset,
using 70% of the samples for training, are evaluated with three
metrics: AP, 1-RL, and AUC. In particular, (a) presents the per-
formance under varying view missing rates with 50% of the labels
missing, while (b) illustrates the performance under varying label
missing rates with 50% of the views missing.
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Figure 5. The experimental results of DRLS on Corel5k (a) and
Pascal07 (b) datasets under 50% view missing and 50% label miss-
ing conditions with different rates of training samples.

Table 5. The experimental results of DRLS with different fea-
tures and feature combination methods, evaluated using three typ-
ical evaluation metrics and two datasets under conditions of 50%
missing views, 50% missing labels, and 70% training samples. In
the table, ω(·) represents the sigmoid activation function, and ⊙
denotes the Hadamard product.

Features Corel5k Pascal07
AP 1-RL AUC AP 1-RL AUC

c̄ 0.419 0.915 0.917 0.561 0.841 0.865
s̄ 0.386 0.894 0.898 0.539 0.819 0.843
s̄+ c̄ 0.399 0.903 0.906 0.547 0.827 0.850
ω(s̄) + c̄ 0.425 0.911 0.913 0.551 0.834 0.859
s̄⊙ c̄ 0.421 0.912 0.914 0.565 0.838 0.859
ω(s̄)⊙ c̄ 0.433 0.916 0.918 0.567 0.843 0.864

sigmoid function to the fused view-specific feature s̄ is ex-
pected to help stabilize the feature distribution, ultimately
contributing to improved classification performance.

In summary, multi-view feature fusion strategies are crit-
ical for enhancing the model’s classification performance.
Selecting an appropriate fusion method can further exploit
the potential of the features.

9.3. Visualization of the learning process

To verify that our model learns view-consistent features and
disentangled view-specific features as intended, we present
the cosine similarity heat maps of the features of a randomly

selected sample in Figs. 6 to 8. These heat maps depict the
cosine similarity between different features at various train-
ing epochs, providing an intuitive understanding of how our
objective function guides feature learning.

Figs. 6 to 8 are conducted under conditions of 50% miss-
ing views and 50% missing labels, where views 1, 2, and 5
of the sample are missing. In Fig. 6, we illustrate the pro-
cess of learning view-consistent features {c(v)}mv=1 during
the pre-training phase with Lconsist. As training progresses,
the cosine similarity between consistent features from dif-
ferent views steadily increases, indicating that the consis-
tent feature learning aligns with our expectations.

In Fig. 7, we calculate the cosine similarity between con-
sistent features {c(v)}mv=1 and specific features {s(v)}mv=1,
showing the learning process of view-specific features dur-
ing the second phase. The similarity between consistent
and specific features consistently remains low, confirming
that our disentanglement loss Ldisent achieves its intended
effect. Moreover, at the early stages of training, the similar-
ity between consistent and specific features is already low,
which is a result of our pre-training strategy. By learning
consistent features in advance, the model captures global
consistency information at the early stages of training, lay-
ing a solid foundation for subsequent specific feature learn-
ing. In Fig. 7, we set β to 1e-2, while in Fig. 8, we increase
β to 1e0. Increasing the weight of β raises the contribution
of Ldisent in the total loss L. Experimental results show
that a higher β value indeed leads to better disentanglement.
When β = 1e-2, the model achieves the best classification
performance on the Corel5k dataset while ensuring effec-
tive disentanglement and preserving as much task-relevant
information as possible. In this case, the total loss L is dom-
inated by LBCE , which encourages the model to encode
more task-relevant information, leading to a certain degree
of similarity among s(v).

9.4. Visualization of classification performance

In Fig. 9 and Fig. 10, we visualize the classification per-
formance of DRLS in comparison to three other advanced
models. These experiments are conducted on Corel5k
(Fig. 9) and IAPRTC12 (Fig. 10) datasets under conditions
of 50% view missing, 50% label missing, and 70% training
samples. The figures demonstrate that our method achieves
superior performance.

10. Time Complexity Analysis
First, we clarify the notation: n denotes the number of sam-
ples, m represents the number of views, k is the number of
categories, and dmax refers to the maximum number of neu-
rons in the intermediate network layers. The time complex-
ity of the pre-training phase is O(nm2d2max +nm2), where
the consistent feature extraction module and the objective
function Lconsist contribute O(nm2d2max) and O(nm2),
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Figure 6. The cosine similarity heat map of view-consistent features c(v) across different views at various training epochs during the
pre-training phase of the DRLS model on Corel5k dataset, under the conditions of 50% view missing, 50% label missing, and 70% training
samples.
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Figure 7. The cosine similarity heat map between view-consistent features c(v) and view-specific features s(v) at different training epochs
during the second phase of disentangled representation learning of the DRLS model on Corel5k dataset, under the conditions of 50% view
missing, 50% label missing, and 70% training samples. Specifically, the trade-off parameter β in the loss function is set to 1e-2.
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Figure 8. Similar to Fig. 7, the heat map during the second training phase is obtained from experiments conducted on Corel5k dataset under
conditions of 50% view missing, 50% label missing, and 70% training samples. However, the trade-off parameter β in the loss function is
set to 1e0.

respectively. The time complexity of the second phase is
O(nmd2max + kd2max +nk+nm+ k), where the disentan-
gled representation learning module and the GIN network
contribute O(nmd2max) and O(kd2max), respectively. The
time complexity of the objective functions LBCE , Ldisent,
and Lle is O(nk), O(nm), and O(k), respectively. The
computational cost of DRLS is primarily dominated by the
variational autoencoder network.

11. Limitations

Although our method effectively addresses the DIMVMLC
problem, it still has some limitations. Currently, we handle

missing data by masking it in the loss function. In the fu-
ture, exploring missing-view recovery techniques could fur-
ther enhance model performance. For instance, the cross-
view reconstruction mechanism we use for learning con-
sistent features may also be leveraged to effectively fill
in missing views. Additionally, as analyzed in Sec. 9.3,
our method needs to seek a balance between Ldisent and
LBCE to achieve optimal results. Future work could ex-
plore adaptive strategies to dynamically adjust the disen-
tanglement strength, optimizing this trade-off according to
different task requirements.



True labels: (“jet”, “plane”,
“runway”)
DICNet: (8, 5, 27)
MTD: (4, 2, 11)
SIP: (5, 4, 3)
DRLS: (3, 1, 4)

True labels: (“water”,
“bridge”, “arch”)
DICNet: (2, 163, 66)
MTD: (7, 15, 18)
SIP: (1, 24, 16)
DRLS: (1, 7, 9)

True labels: (“tree”, “snow”,
“elk”)
DICNet: (2, 18, 37)
MTD: (1, 82, 86)
SIP: (2, 25, 59)
DRLS: (1, 5, 7)

True labels: (“sky”, “build-
ings”, “light”)
DICNet: (181, 6, 18)
MTD: (12, 5, 8)
SIP: (7, 6, 2)
DRLS: (6, 2, 8)

True labels: (“water”, “peo-
ple”, “pool”)
DICNet: (23, 1, 55)
MTD: (2, 1, 7)
SIP: (3, 1, 7)
DRLS: (2, 1, 4)

True labels: (“tree”, “ice”,
“field”, “frost”)
DICNet: (5, 8, 13, 12)
MTD: (23, 7, 11, 9)
SIP: (18, 5, 13, 4)
DRLS: (7, 4, 9, 2)

True labels: (“mountain”,
“sky”, “snow”)
DICNet: (3, 1, 14)
MTD: (3, 1, 15)
SIP: (3, 1, 10)
DRLS: (2, 1, 5)

True labels: (“flowers”,
“tulip”, “petals”, “stems”)
DICNet: (5, 87, 35, 45)
MTD: (1, 70, 5, 63)
SIP: (2, 21, 27, 29)
DRLS: (3, 5, 4, 9)

Figure 9. On Corel5k dataset, we present a visual comparison of classification performance across four different methods. The numbers in
parentheses for each model represent the likelihood ranking of the sample belonging to each label as predicted by the respective model.

True labels: (“people”, “ta-
ble”, “wall”)
DICNet: (8, 4, 3)
MTD: (7, 3, 2)
SIP: (7, 3, 5)
DRLS: (5, 2, 3)

True labels: (“lake”, “shore”,
“woman”)
DICNet: (3, 4, 7)
MTD: (5, 7, 10)
SIP: (3, 4, 10)
DRLS: (5, 3, 6)

True labels: (“lake”, “shore”,
“tourist”, “tree”)
DICNet: (11, 20, 18, 8)
MTD: (14, 25, 15, 6)
SIP: (6, 13, 32, 7)
DRLS: (4, 9, 10, 7)

True labels: (“classroom”,
“desk”, “tourist”)
DICNet: (7, 8, 6)
MTD: (20, 10, 8)
SIP: (11, 5, 10)
DRLS: (6, 4, 8)

True labels: (“man”, “night”,
“woman”)
DICNet: (1, 9, 2)
MTD: (1, 12, 2)
SIP: (1, 7, 2)
DRLS: (2, 3, 1)

True labels: (“landscape”,
“sky”, “tree”)
DICNet: (15, 7, 21)
MTD: (8, 2, 21)
SIP: (18, 2, 3)
DRLS: (7, 1, 5)

True labels: (“beach”, “man”,
“rock”, “sea”)
DICNet: (19, 10, 2, 7)
MTD: (14, 28, 3, 12)
SIP: (17, 10, 14, 15)
DRLS: (6, 9, 3, 4)

True labels: (“field”, “grand-
stand”, “player”, “spectator”)
DICNet: (27, 4, 8, 2)
MTD: (9, 4, 3, 7)
SIP: (31, 49, 7, 54)
DRLS: (4, 2, 1, 3)

Figure 10. Similar to the above figure, this shows the results on IAPRTC12 dataset.
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