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Supplementary Material

A. Overview
With in the supplementary, we provide:
• Details of metrics calculation in Sec. B.
• Details of experiment settings in Sec. C.
• More ablation study in Sec. D.
• More limitations and future work in Sec. F.
• More Results and in Sec. G.
• Pseudocode and demo videos including:

– IGS code.zip
– IGS-s testview.mp4
– IGS-l testview.mp4
– IGS freeview.mp4
The complete code, pretrained weights, and the training
dataset we constructed will be released as open-source af-
ter the review process is completed.

B. Details of the metrics calculation
As mentioned in Sec. 5 of the main paper, all metrics are
averaged over the full 300-frame sequence, including frame
0, along with previous methods[2, 7]. Specifically:
Storage: The storage required for IGS includes the Gaus-
sian primitives for frame 0 and each key frame, as well as
the residuals for each candidate frame. Since each candi-
date frame is generated by applying motion from the previ-
ous key frame using AGM-Net, we only need to store the
corresponding displacement (du) and rotation (drot), along
with the mask of points with motion. We report the average
storage requirements over the 300 frames.
Train: In line with previous methods[2, 7], we report the
training time, which refers to the average time required to
construct an Free-Viewpoint Video from a multi-view video
sequence. This includes the time for constructing the Gaus-
sian primitives for frame 0, generating candidate frames us-
ing AGM-Net, and refining the key frames. The total time
is averaged over all 300 frames, which corresponds to our
per-frame reconstruction time.

C. More implementation details
The reconstruction quality of Gaussian primitives for the
first frame in each scenario is summarized in Tab. C1. For
the N3DV scenes, we set the SH degree to 3, whereas for
Meeting Room, it was set to 1 to mitigate overfitting caused
by sparse viewpoints. During the Max Points Bounded Re-
finement process, all scenarios used the same learning rate
settings. Specifically, the learning rate for position and ro-
tation was set to ten times that in 3DGS, while the other

parameters were kept consistent with 3DGS.
The Max Points Number Nmax was determined based on

the number of Gaussians in the initial frame of each scene.
Specifically, Nmax was set to 150,000 for N3DV, 40,000 for
the Meeting Room dataset.

Table C1. Reconstruction results of Gaussian models for the first
frame in each scenario.

Scene PSNR↑ Train ↓ Storage↓ Points
(dB) (s) (MB) Num

N3DV[3]

cur roasted beef 33.96 287 36 149188
sear steak 34.03 287 35 143996

Meeting room[2]

trimming 30.36 540 3.9 37432
vrheadset 30.68 540 4 38610

D. More ablation study
In our experiments, we also explored incorporating addi-
tional modules into AGM-Net. However, the results showed
that these modules did not achieve the expected improve-
ments. The ablation studies are detailed as follows:
Attention-Based View Fusion: During the Projection-
Aware Motion Feature Lift, we consider assigning differ-
ent weights to features from different viewpoints instead
of using the simple averaging method described in Eq.2 of
the main paper. Specifically, for an anchor, the features
obtained from each viewpoint are concatenated with the
embedding of the corresponding viewpoint’s pose. These
Nv features were then processed through self-attention,
followed by a Softmax operation to compute the weights
for aggregating the multi-view features. The experimen-
tal results, as shown in Tab. D2, indicate that adding this
module doesn’t yield improvements on the test scenes of
N3DV. This is likely because N3DV features forward-
facing scenes, where differences between camera view-
points are not significant. However, for 360° scenes, this
module could be a promising direction for future work.
Occlusion-Aware Projection: We also attempted to ac-
count for occlusion effects during the Projection-Aware
Motion Feature Lift by considering how anchor points
might be obscured during projection. Specifically, we em-
ploy point rasterization[6], ensuring that each pixel corre-
sponds to only one visible anchor point. The experimental
results, shown in Tab. D2, reveal that this approach doesn’t
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improve performance. Since we project anchor points,
which are much sparser compared to Gaussian points, sig-
nificant occlusion effects are rare. Moreover, using rasteri-
zation for projection reduces the accuracy of feature extrac-
tion.

Table D2. More ablation study results.

Method PSNR(dB)↑
Add-Attention-based view fusion 33.58
Add-Occulusion aware projection 33.50
Ours-s 33.62

E. Mode discussion
E.1. Frame Jittering
As shown in the supplementary video, frame jittering in our
method mainly occurs in static background areas. Com-
paring adjacent frames Fig. E1, we observe that key-frame
optimization causes disturbances in the background, while
no such issue arises between adjacent candidate frames.
This suggests that key-frame optimization deforms Gaus-
sians in the background, particularly with floaters Fig. F3.
In the moving foreground, AGM-Net prevents jitter seen in
3DGStream by smoothing point deformation. A potential
solution is to segment the scene into foreground and back-
ground and apply the segmentation mask during key-frame
optimization. A more robust first-frame reconstruction in
sparse views could also help.

Candidate frame 29
 to

Key frame 30 

optical flow mask of optical flow Pixel-level difference

Candidate frame 28
 to

Candidate frame 29 

Figure E1. The difference between renderings of Adjacent frames

E.2. The impact of the number of anchor points
We tested performance with varying numbers of anchor
points , shown in Fig. E2. The number of anchor points
has little impact on performance.

F. More limitations and future work
There are additional limitations that constrain the perfor-
mance of IGS, which also present opportunities for future
research directions.

First, the performance of streaming-based dynamic
scene reconstruction is influenced by the quality of static
reconstruction in the first frame[7]. Poor reconstruction in
the first frame, such as the presence of excessive floaters
around moving objects as shown in Fig. F3, can degrade

Figure E2. The impact of the number of anchor points

the performance of AGM-Net. Although addressing static
reconstruction is beyond the scope of our work, adopting
more robust static reconstruction methods could enhance
the results of dynamic scene reconstruction. Second, AGM-
Net has been trained on four sequences from the N3DV in-
door dataset. The limited size of the training data constrains
its generalization capability. Training on larger-scale multi-
view video sequences is a promising direction for future
improvements. Notably, our method only relies on view
synthesis loss for supervision, making it easier to incorpo-
rate large-scale datasets without requiring annotated ground
truth. Finally, our current approach injects depth and view
conditions into the embeddings of an optical flow model
to enable awareness of 3D scene information. Leveraging
more accurate long-range optical flow[9] or scene flow[5, 8]
methods could further improve our results.

Figure F3. Bad Case in first-frame reconstruction: Due to sparse
viewpoints, floaters are present around moving objects, which neg-
atively impact our streaming performance and lead to issues such
as background jitter.

G. More results
The per-scene comparison results on the N3DV dataset
against previous SOTA methods [1, 2, 4, 7, 10–12] are
shown in Tab. G3. Further qualitative comparisons with
3DGStream[7] are illustrated in Fig. G4.

Additionally, we provide videos showcasing the re-
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Table G3. Per-scene results on N3DV

Method cut roasted beef sear steak

PSNR(dB)↑ DSSIM↓ LPIPS↓ PSNR(dB)↑ DSSIM↓ LPIPS↓
Offline training

Kplanes[1] 31.82 0.017 - 32.52 0.013 -
Realtime-4DGS[12] 33.85 - - 33.51 - -
4DGS[10] 32.90 0.022 - 32.49 0.022 -
Spacetime-GS[4] 33.52 0.011 0.036 33.89 0.009 0.030
Saro-GS[11] 33.91 0.021 0.038 33.89 0.010 0.036

Online training

StreamRF[2] 31.81 - - 32.36 - -
3DGStream[7] 33.21 - - 33.01 - -
3DGStream[7]† 32.39 0.015 0.042 33.12 0.014 0.036
Ours-s 33.62 0.012 0.048 34.16 0.010 0.038
Ours-l 33.93 0.011 0.043 34.35 0.010 0.035

construction results for the sear steak test scene from
N3DV, including a Test-Viewpoint Video and a Free-
Viewpoint Video generated using IGS. For the Free-
Viewpoint Video, the viewpoints are uniformly sampled on
a sphere to highlight the ability of our IGS to support free-
viewpoint interaction with dynamic scenes. The results
are available in the video files IGS-s testview.mp4,
IGS-l testview.mp4 and IGS freeview.mp4.
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Figure G4. Qualitative comparison from the N3DV dataset.
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