
StreetCrafter: Street View Synthesis with Controllable Video Diffusion Models

Supplementary Material

1. More Implementation Details

1.1. StreetCrafter Training Details

We construct the training video clips using the front camera
and LiDAR sensor of Waymo Open [6] and PandaSet [9]
datasets, with the start frame of each video clip selected at
the interval of 0.5 second (5 frames for both dataset). We
set the radius of each LiDAR point cloud in NDC space
to 0.01 and crop the upper part of LiDAR condition maps
to match the input resolution of the diffusion model during
both training and inference.

For adaptation from the pretrained model of Vista [2],
we ignore the action control layer injected via cross-
attention and mark the first element of the frame-wise mask
to 1 and the rest to 0. We incorporate the LoRA [3] adapters
introduced during the learning of action controllability as it
contributes to the enhancement of visual quality [2]. More
details can be found in the original paper.

During the low-resolution training stage, we sample ex-
clusively from Waymo dataset. During the high-resolution
training stage, we sample from a hybrid dataset, combining
Waymo Open and PandaSet datasets with sampling proba-
bilities of 0.9 and 0.1, respectively.

1.2. StreetCrafter Distillation Details

Loss function. We jointly optimize the gaussian parame-
ters of background and foreground moving objects, texel of
the high-resolution sky cubemap and noisy object tracklets
following Street Gaussians [10]. The extra loss Lg for input
view camera is defined as:

Lg = λdepthLdepth + λskyLsky + λregLreg, (1)

where Ldepth, Lsky and Lreg share the same format as
Street Gaussians [10]. Please refer to the original paper
for more details. The coefficients λdepth, λsky and λreg
in Equation 1 are set to 0.01, 0.05 and 0.1, respectively.
For the loss function of novel view camera, we crop the
upper part of the rendering image and resize to 576× 1024
to compute the LPIPS [15] loss with novel view image
generated by StreetCrafter .

Point cloud initialization. We initialize the background
gaussian model as the combination of LiDAR and SfM
point cloud following. The object gaussian model is
initialized with aggregated LiDAR points obtained from
object tracklets or random sampling. The colors of LiDAR
points are assigned by projecting them onto the nearest
image plane.

Optimization. We adopt the densification strategy in-
troduced in [14] to prevent suboptimal solutions by ac-
cumulating the norms of view-space position gradients.
The densification threshold is set to 0.0006. We disable
the pruning of big gaussians in world space since this
hinders the gaussian model to represent distant regions and
the LiDAR points have provided a good initialization to
prevent the model from falling into local optima. We finally
introduce the 2D Mip filter to enable anti-aliased rendering
inspired by [13].

We sample StreetCrafter every 5000 iterations from iter-
ation 7000 to 22000 and linearly reduce the noise scale s
from 0.7 to 0.3. We use the annotated object tracklets pro-
vided by the datasets, with the learning rates for the transla-
tion vector and rotation matrix initialized at 5e−4 and 1e−5,
respectively, decaying exponentially to 1e−5 and 5e−6. For
the remaining parameters, we use the default values from
the official implementation of Street Gaussians [10].

1.3. Evaluation Details

Interpolation. For the interpolation setting of Ours-V
in the main paper, we incorporate training images along
the input trajectory in addition to the reference image and
LiDAR conditions. During each denoising step, we replace
the prediction of Fθ at training frame with the clean latent
of training images. This could lead to improvement in the
interpolation quality, with PSNR increasing from 23.66
to 27.19 and LPIPS decreasing from 0.098 to 0.087 on
Waymo Open Dataset [6].

Baselines. We use the same object tracklets as our method
for all the baselines requiring 3D bounding box as input [7,
10, 11]. We use the same rendering kernel and optimization
strategy as our method for all the baselines using 3DGS as
the scene representation [5, 10].

Metric. For Fréchet inception distance (FID) metric, we
mark the input video as real and the rendered sequence as
unreal for each scene. For Ours-V, we upper-crop the input
video to match the resolution of the generated video.

2. Additional Experiments

2.1. More Comparisons

Comparisons with baselines. We provide more qualita-
tive comparisons on Waymo [6] dataset under the setting
of lane change in Figure 6. Figures 7, 8 display the view
interpolation results on Waymo Open [6] and PandaSet [9]
datasets. Our method achieves comparable rendering



quality to the baselines while achieving significantly better
results for view extrapolation.

Comparisons with concurrent works. We compare
Ours-V with ViewCrafter [12] and Ours-G with Drive-
Dreamer4D [16], both of which are concurrent of our
works. For ViewCrafter, we make several modifications
to improve its performance. First, we build the global
point cloud from the whole input sequence instead of
selecting the first frame as in the original setting. Second,
we fix the camera parameters during the global alignment
process of DUSt3R [8] by using camera calibration results
from the dataset. This can also help define camera poses
within the dataset’s coordinate system when performing
view extrapolation. For DriveDreamer4D, we compare
our method on segment-103593 of Waymo following their
setting with PVG [1] as the base model.

As shown in Table 1 and Figures 1, 2, our method
achieves better view synthesis results under both input
and novel trajectory compared with ViewCrafter [12].
ViewCrafter builds point cloud without considering that
the geometry of dynamic scene changes overtime, thus
it fails to accurately model dynamic regions as shown in
Figure 2. The generated results also degrade significantly
as the camera deviates from the input trajectory since the
predicted point cloud is defined in the camera coordinate
system. In contrast, the LiDAR point cloud defined in the
world coordinate system provides our model with stronger
generalization ability on new trajectories even if no ground
truth data is available during training.

As shown in Figure 3, our method achieves better results
under novel trajectory compared with DriveDreamer4D
[16] (FID @ 2m 89.71 vs. 91.23, FID @ 3m 96.11
vs. 123.32). Due to the sparse conditioning of Drive-
Dreamer4D, the generated videos often lack accurate
3D perception. This leads to noticeable artifacts in the
reconstructed scene, such as the vehicle in the lower left
corner and the building on the right side.

Methods Input trajectory Novel trajectory

PSNR↑ LPIPS↓ FID ↓ FID↓ @ 2m FID↓ @ 3m

ViewCrafter [12] 21.59 0.226 97.86 135.69 137.76
Ours-V 25.90 0.143 60.49 62.43 73.49

Table 1. Quantitative comparison with ViewCrafter [12]. We use
the video clips in ablation to test the results on input trajectory
and the scenes in experiment to test the results on novel trajectory.
Metrics are averaged over all sampled sequences.

2.2. More Editings

We provide more visual results of scene editing in Figure 4
including object translation, replacement and removal.

Ours-V Input ViewViewCrafter

Figure 1. Qualitative comparison with ViewCrafter [12] under
novel trajectory. The camera is laterally shifted for 3 meters. Input
view denotes the closest input video frames.

Ours-V Ground TruthViewCrafter

Figure 2. Qualitative comparison with ViewCrafter [12] under in-
put trajectory. Our model can handle moving objects.

Input ViewOurs-GDriveDreamer4D

Figure 3. Qualitative comparison with DriveDreamer4D [16] un-
der novel trajectory. The camera is laterally shifted for 2 meters.

2.3. More Ablations

Analysis of LiDAR conditions We present more visual
comparisons of the design choice of StreetCrafter in Fig-
ure 5. The generated frames under the guidance of camera
parameter as vector are blurry when the target viewpoint
move away from the reference image. Although the 3D
bounding box can provide priors regrading object motions,
it still fails to align well with the target image as shown in
the first row of Figure 5. The results under the condition
of projected multi-frame LiDAR can preserve the scene
structure but still lack details in regions with rich texture.

Analysis of the novel view sampling ratio We conduct
experiment on one Waymo sequence to analyze the influ-
ence of novel view sampling ratio p. The results in Table 2
indicates that p = 0.4 yields the overall best result.



Methods Interpolation Lane Shift

PSNR↑ LPIPS↓ FID↓ @ 2m FID↓ @ 3m

(1) p = 0.8 28.76 0.059 72.76 84.78
(2) p = 0.6 29.61 0.049 68.33 81.26
(3) p = 0.4 30.42 0.041 67.54 79.19
(4) p = 0.2 30.29 0.041 67.09 81.26

Table 2. Ablations on the novel view sampling ratio p.

(a
)T

ra
ns

la
tio

n
(c

) R
em

ov
al

(b
) R

ep
la

ce
m

en
t

Figure 4. More editing results on the Waymo [6] dataset. Im-
ages in the right and left columns represent the results before and
after editing, respectively.

Analysis of the noise scale We conduct experiment on
one Waymo sequence to analyze the influence of noise
scale s.s We have demonstrated in the main paper that
adding noise to the render latents leads to better scene
consistency than starting from gaussian noise. Since the
added noise would have little influence when s is less than
0.3 according to the sampling scheme of Vista [4], we set
smin to 0.3 and ablate on the value of smax. The results in
Table 3 indicates that reducing s from 0.7 to 0.3 maintains
a balance between sampling steps and rendering quality.

Methods Interpolation Lane Shift

PSNR↑ LPIPS↓ FID↓ @ 2m FID↓ @ 3m

(1) smax = 1.0, smin = 0.3 30.08 0.044 69.66 79.87
(2) smax = 0.7, smin = 0.3 30.42 0.041 67.54 79.19
(3) smax = 0.5, smin = 0.3 30.46 0.042 68.68 81.23

Table 3. Ablations on the noise scale s.

2.4. Deformable Objects

We show the generated videos of StreetCrafter under scene
with multiple deformable objects such as pedestrians in
Figure 9. Although multi-frame LiDAR conditions are
not ideal for deformable objects, our model can generate

plausible results with the generative prior of diffusion
model.



Reference image Ours Pose + 3D box Ground TruthProject

Figure 5. Visual ablation results on the design choice of StreetCrafter.

EmerNeRF Street Gaussian Ours-G Ours-VInput view

Figure 6. Qualitative comparisons on the Waymo [6] dataset. The camera is laterally shifted for 2 meters to left or right. Input view
refers to the closest training camera.



EmerNeRF Street Gaussian Ours-G Ours-VGround Truth

Figure 7. Qualitative comparisons of view interpolation on the Waymo [6] dataset.

Ground Truth Street Gaussian NeuRAD Ours-G Ours-V

Figure 8. Qualitative comparisons of view interpolation on the PandaSet [9] dataset.

Reference image Generated videos

Figure 9. Visual results of StreetCrafter for scene with deformable objects.
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