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Task Preference Optimization: Improving Multimodal Large Language Models
with Vision Task Alignment

Supplementary Material

1. Experiment Details001

MVbench. We present the detailed performance of002
MVBench in Table 1, VideoChat-TPO achieves an av-003
erage score of 66.8, increasing by 6.4 points based on004
VideoChat2. It gets superior performance among MLLMs005
with the same number of input frames and LLMs of com-006
parable model scale. In Action Localization, temporal la-007
bels in the VideoChat2-Textualized-Task are defined as text.008
While the model demonstrates strong capabilities in zero-009
shot temporal grounding, converting the task into a QA010
problem does not improve performance. However, by op-011
timizing with TPO, the model can benefit from original012
label supervision, resulting in corresponding performance013
enhancements. Also, Its superior performance is particu-014
larly evident in tasks that require moment-based perception015
and reasoning, including Action Sequence (AS), Action Lo-016
calization (AL) and Action Prediction (AP), with scores017
of 84.0 (+7.5%), 55.0 (+10%), and 69.5 (+13.5%) respec-018
tively. This demonstrates the excellent potential of TPO in019
sophisticated video understanding tasks.020

MMIU. The results are shown in Table 2. VideoChat-021
TPO shows a significant improvement over VideoChat2,022
achieving an overall score of 40.2 (+5.2%). Compared with023
VideoChat2, Our model has achieved clear improvements in024
Causality Reasoning (CR), Visually Grounded Reasoning025
(VGR), Multiple Image Captioning (MIC), Spot the Differ-026
ence (STD), General Action Recognition (GAR), Temporal027
Localization (TL), Video Captioning (VidCap), Multiview028
Action Recognition (MAR), Image Captioning with Spatial029
Context (ICSC), and Egocentric Video Question Answer-030
ing (EVQA), with scores of 73.0 (+26.5%), 69.5 (+15.2%),031
83.0 (+19%), 92.5 (+61%), 88.0 (+15%), 94.5 (+13.0%),032
73.4 (+35.8%), 48.5 (+12%) and 59.0 (14.5%), respectively.033
Among them, we suppose the improvement of TL capability034
comes from the optimization of our temporal head, and the035
improvement of VGR, STD, MAR and ICSC capabilities036
comes from the optimization of our region head and mask037
head. The enhancements observed in captioning, specifi-038
cally in metrics such as MIC, IC, and VidCap, indicate an039
improvement of TPO to capture detailed visuals. Mean-040
while, we find that the improvement in multi-image ca-041
pabilities stems from enhanced instruction comprehension.042
Compared with video assessments, which primarily consist043
of multiple-choice questions, multi-image evaluations em-044
phasize the accuracy of responses to specific questions. Af-045
ter optimization with TPO, the model has significantly im-046

proved its instruction following, leading to a higher success 047
rate. 048

How Scaling Task Data Affect MLLMs. We perform an 049
ablation experiment on the dataset of stage 2 to evaluate the 050
impact of the task training data on the model performance. 051
Specifically, we reduce the number of temporal grounding 052
datasets from six to one (QVHighlight [18]). As shown in 053
Table 3, using only one dataset leads to slightly worse con- 054
versational performance (-0.3%) on MVBench and signifi- 055
cantly poorer expert task performance (-5.6%) on Charades- 056
STA R@0.5, when compared to employing multiple tempo- 057
ral grounding datasets for training the temporal task head. 058
Notably, this approach remains more effective than training 059
after textualizing the task data in QA tasks like MVBench. 060
This finding indicates that scaling task data gives notable 061
performance improvements in both multimodal and specific 062
vision tasks. Various datasets are necessary for effectively 063
enhancing TPO’s dialogue capabilities and achieving zero- 064
shot generalization to fine-grained visual tasks. 065

LLaVA-OV-TPO Performance on Video Benchmarks. 066
According to Table 4, TPO method demonstrates perfor- 067
mance improvements on LLaVA-OV [19] across multiple 068
video benchmarks as it does in VideoChat [22] model. 069
Since TPO uses extra visual cues to guide MLLM, LLaVA- 070
OV-TPO achieves an average score of 64.8(+8.1%) on 071
MVBench [22] and 64.0(+6.9%) on PerceptionTest [33]. 072
The notable improvement clearly demonstrates the model’s 073
greatly enhanced ability to perceive visual details. More- 074
over, LLaVA-OV-TPO achieves a 3.1% performance im- 075
provement on VideoMME [12] and shows that the model 076
has also made progress in knowledge modeling and under- 077
standing long videos. These results suggest TPO method is 078
effective across various models and is particularly beneficial 079
for fine-grained perception tasks. 080

2. Training and Data Details 081

Table 5 and 6 lists the detailed training configurations and 082
data of VideoChat-TPO in different stages. In each stage, 083
the model is parametrized from the weights from the previ- 084
ous stage and continues training. 085

Settings of Stage 1. The LLM is equipped with 086
LoRA [16] for saving computational memory, using a 087
LoRA rank of 16 and an alpha of 32. Only the LoRA is 088
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Model Avg. AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI

VideoChatGPT [28] 32.7 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5
VideoLLaMA [43] 34.1 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0
VideoChat [21] 35.5 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0
TimeChat [37] 38.5 40.5 36.0 61.0 32.5 53.0 53.5 41.5 29.0 19.5 26.5 66.5 34.0 20.0 43.5 42.0 36.5 36.0 29.0 35.0 35.0
Video-LLaVA [23] 43.0 46.0 42.5 56.5 39.0 53.5 53.0 48.0 41.0 29.0 31.5 82.5 45.0 26.0 53.0 41.5 33.5 41.5 27.5 38.5 31.5
P-LLaVA-7B [40] 46.6 58.0 49.0 55.5 41.0 61.0 56.0 61.0 36.0 23.5 26.0 82.0 39.5 42.0 52.0 45.0 42.0 53.5 30.5 48.0 31.0
ShareGPT4Video [6] 51.2 49.5 39.5 79.5 40.0 54.5 82.5 54.5 32.5 50.5 41.5 84.5 35.5 62.5 75.0 51.0 25.5 46.5 28.5 39.0 51.5
ST-LLM [25] 54.9 66.0 53.5 84.0 44.0 58.5 80.5 73.5 38.5 42.5 31.0 86.5 36.5 56.5 78.5 43.0 44.5 46.5 34.5 41.5 58.5
VideoGPT+ [27] 58.7 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0
VideoChat2 [22] 60.4 75.5 58.0 83.5 50.5 60.5 87.5 74.5 45.0 47.5 44.0 82.5 37.0 64.5 87.5 51.0 66.5 47.0 35.0 37.0 72.5

VideoChat2-textualized-task 64.8 76.5 56.0 88.5 52.5 77.0 92.5 74.0 41.0 50.5 45.0 87.0 47.0 74.0 89.0 48.0 85.0 45.0 34.0 58.5 73.0

VideoChat-TPO 66.8 84.0 69.5 87.5 52.0 77.0 92.0 81.0 40.5 42.5 55.0 89.0 47.5 68.0 89.0 58.0 87.0 57.5 27.0 60.0 72.0

Table 1. Results on MVBench Multi-choice Question Answering.

Model Overall CR ER FD FC SC VCor VQA VGR FR HR I2IR MIC PR S2IR STD STS T2IR VR AQA GAR MVU MEV NIP TL TO VidCap
GuAR GNAP TC VClz VCo VO EVQA HE IQASC ICSC ISTE ITRSC MAR MR JPS 3DE 3DOD 3DOT 3DPE 3DSR 3DQA PT RPM SOT 3DCR 3DIR

OpenFlamingo [1] 22.3 25.5 25.8 24.6 21.6 25.0 28.2 34.5 49.0 14.5 19.0 13.5 22.5 17.5 26.0 39.0 49.0 20.0 27.5 10.0 13.5 16.5 30.0 20.0 18.7 24.5 22.5
25.0 21.5 25.5 25.0 14.5 13.5 15.5 27.5 4.0 25.5 23.0 7.0 22.1 3.0 1.5 26.5 22.0 35.0 17.0 28.5 20.5 23.5 11.5 31.0 25.0 23.5

XComposer2 [11] 21.9 24.0 21.0 10.8 5.8 0.0 0.0 34.2 24.0 14.5 2.5 23.0 63.5 19.0 26.0 14.5 31.0 9.5 28.5 31.5 59.5 44.0 30.0 4.5 15.5 12.0 66.0
55.0 35.0 42.5 22.5 2.5 19.0 20.0 8.0 15.5 45.0 0.0 0.0 20.6 0.0 16.5 0.0 7.0 0.0 4.5 0.0 33.5 63.0 1.5 38.5 42.0 33.0

Qwen-chat [2] 15.9 20.5 2.5 13.3 2.5 9.9 5.9 31.2 23.8 10.5 19.5 12.5 41.0 5.5 13.5 29.5 45.0 3.0 12.0 10.0 52.5 18.5 16.5 2.5 3.6 5.5 47.0
29.0 23.0 18.0 6.0 6.0 6.0 32.0 9.0 13.5 17.0 15.5 3.5 40.2 15.8 16.5 16.5 22.5 17.5 13.0 14.5 14.0 8.0 3.0 8.5 1.5 0.5

LLaVA-v1.5 [24] 19.2 14.1 4.2 13.7 5.8 1.9 6.9 27.3 35.0 6.5 12.5 12.5 53.0 10.0 25.5 66.5 43.0 19.0 3.5 2.5 23.5 36.5 12.0 16.5 6.7 7.0 28.0
24.5 17.5 40.0 15.0 21.5 4.0 26.0 7.5 26.5 17.5 5.0 4.5 25.6 27.1 8.5 8.0 4.0 6.0 6.0 14.5 29.5 66.0 2.0 35.0 34.5 28.5

ShareGPT4V [5] 18.5 16.4 5.0 10.8 6.2 9.0 2.7 34.2 28.5 4.5 10.5 3.5 57.0 4.0 12.5 55.5 44.5 13.5 5.0 5.0 26.0 38.0 14.0 15.5 10.9 6.0 25.0
26.5 19.0 42.0 7.5 14.0 7.5 31.5 7.0 29.0 18.0 5.0 1.5 28.1 23.3 9.5 3.0 7.0 6.0 2.0 8.0 27.5 65.5 0.0 44.0 36.5 31.0

LLaVA-interleave [20] 32.4 29.5 24.8 26.3 23.2 26.4 25.1 48.8 49.8 23.5 25.0 28.0 57.0 21.5 33.0 63.5 54.5 25.0 26.0 24.0 27.0 49.5 29.0 23.0 25.4 27.5 32.5
43.0 34.0 49.0 29.5 32.0 26.0 30.0 21.5 42.0 47.5 22.5 14.0 23.6 32.3 17.5 28.5 23.0 17.5 3.0 31.0 36.0 79.0 15.0 60.5 34.5 42.5

InternVL1.5-chat [7] 37.4 63.7 31.0 22.6 20.3 16.3 28.3 63.2 38.5 21.0 28.0 26.5 82.5 20.5 31.5 6.0 45.5 26.5 29.5 29.5 85.0 65.0 32.0 23.5 29.0 18.5 89.0
90.5 35.5 56.5 23.5 31.0 24.5 53.0 26.0 40.0 49.0 25.5 15.5 59.3 43.6 19.5 22.5 23.5 15.0 33.5 28.0 39.0 71.0 9.5 46.5 50.5 39.5

VideoChat2 [22] 35.0 46.8 27.5 31.6 23.6 25.6 28.8 45.3 54.3 20.5 25.5 25.5 64.0 21.0 31.0 31.5 50.0 21.0 31.0 30.5 73.0 51.0 31.5 23.5 21.8 24.0 81.5
54.0 42.0 59.0 23.0 30.5 23.0 44.5 26.5 44.0 36.5 25.0 18.0 38.6 44.4 21.0 26.5 24.0 13.0 0.0 28.5 43.0 65.5 11.5 58.0 36.0 35.0

VideoChat-TPO 40.2 73.3 24.3 37.0 24.6 26.5 26.9 45.0 69.5 20.5 23.5 29.5 83.0 21.0 31.0 92.5 49.5 29.5 30.0 24.5 88.0 67.5 34.5 29.5 36.8 24.5 94.5
59.0 39.5 56.5 27.5 29.5 21.0 59.0 25.0 44.0 48.5 27.5 14.5 73.4 44.4 23.5 27.5 24.5 7.5 0.0 24.0 38.5 67.0 11.5 58.5 47.0 40.5

Table 2. Quantitative results of MMIU [30]. Accuracy is the metric, and the Overall score is computed across all tasks.

Model Charades-STA [13] MVBench

R@0.3 R@0.5 R@0.7 mIoU AVG

VideoChat-TPO 58.3 40.2 18.4 38.1 66.8
Only QVHighlight 54.8 34.6 15.1 35.8 66.5

Table 3. Ablation task datasets.

Model MVBench VideoMME PerceptionTest

LLaVa-OV 56.7 58.2 57.1
LLaVa-OV-TPO 64.8(+8.1) 61.3(+3.1) 64.0(+6.9)

Table 4. Perfermance of LLaVA-OV on Video Benchmarks.

trained for efficiency. We adopt the AdamW optimizer [26]089
with the peak learning rate of 2e-5 and use cosine weight090
decay. The training involves a total batch size of 128 across091
32 A100 GPUs. Since the purpose of stage 1 is to make092
MLLM identify tasks, we only use a small amount of data093
in this stage and adopt LLM loss so that LLM can generate094
task-specific tokens. For each task, we train the LLM with095
50k examples to recognize the task. For training data, we096
use DiDeMo [15] and QuerYD [32] for temporal grounding097
task, RefCOCO [41], RefCOCOg [41] and RefCOCO+ [41]098
for spatial grounding task, and SAMv2 [35], MeViS [10] for099
segmentation task.100

Settings of Stage 2. In stage 2, we add the task heads (i.e. 101
temporal head, region head, and mask head) and learnable 102
task tokens (temporal token, region token, and mask token). 103
The objective of the second training stage is to learn the task 104
head with preliminary functional capabilities. Therefore, 105
we train LLM, task head and task token at this stage, and 106
freeze vision encoder and connector. 107

In stage 2, the region head and token are trained with 108
a learning rate of 2e-5 using a cosine learning rate sched- 109
uler. We use a two-layer MLP as region head to train from 110
scratch and we use MSE loss for region head training. For 111
training data, we use AS-V2 [38], Visual Genome [17], Re- 112
fCOCO [41], RefCOCOg [41], RefCOCO+ [41] for one 113
epoch with a total batch size of 128 to train region head 114
and token. 115

We use a learning rate of 1e-4 for the temporal head 116
and 2e-4 for the temporal token in stage 2. The tempo- 117
ral head is the same as CG-DETR [31] in structure, but we 118
use the pre-trained InternVideo2 [39] to extract video fea- 119
tures, while query features are extracted using the Chinese- 120
Llama-Alpaca [8]. We use the same loss function in CG- 121
DETR. We train the model on DiDeMo [15], QuerYD [32], 122
HiRest [42], ActivityNet [3], TACoS [36], NLQ [14] for 25 123
epochs with a total batch size of 64. 124

For the mask head, we use the pre-trained SAM2 [35] 125
model, replacing the prompt encoder of SAM2 with a single 126
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Config Stage 1 Stage 2 Stage 3 w/o Con. Stage 3
Vision Enc. LR Frozen Frozen 2e-5 2e-5
Connector LR Frozen Frozen 2e-5 2e-5
Temporal Head LR - 1e-4 2e-5 2e-5
Region Head LR - 1e-4 2e-5 2e-5
Mask Head LR - Frozen Frozen Frozen
Mask Adapter LR - 1e-4 2e-5 2e-5
Temporal Token LR - 2e-4 2e-5 2e-5
Region Token LR - 1e-4 2e-5 2e-5
Mask Token LR - 1e-4 2e-5 2e-5
LLM LoRA LR 2e-5 2e-5 2e-5 2e-5
LR Schedule Cosine Decay Cosine Decay Cosine Decay Cosine Decay
Optimizer AdamW [26] AdamW [26] AdamW [26] AdamW [26]
Weight Decay 0.02 0.02 0.02 0.02
Input Resolution 2242 2242 2242 2242

Input Frames 16 16 16 16
LLM LoRA Rank 16 16 16 16
LLM LoRA Alpha 32 32 32 32
Warmup Ratio 0.2 0.2 0.2 0.2
Total Batch Size 128 64/128/128 256 256
Epoch 1 25/3/1 1 3
Numerical Precision DeepSpeed bf16 [34] DeepSpeed bf16 [34] DeepSpeed bf16 [34] DeepSpeed bf16 [34]

Table 5. Training Settings of VideoChat-TPO. Con. means conversation data and LR means learning rate.

Stage Task Samples Datasets

Stage 1
Temporal Grounding 50K DiDeMo [15], QuerYD [32]

Spatial Grounding 50K RefCOCO [41], RefCOCOg [41], RefCOCO+ [29]
Segmentation 50K SAMv2 [35], MeViS [10]

Stage 2
Temporal Grounding 116.5K DiDeMo [15], QuerYD [32], HiRest [42], ActivityNet [3], TACoS [36], NLQ [14]

Spatial Grounding 540.0K AS-V2 [38], Visual Genome [17], RefCOCO [41], RefCOCO+ [41], RefCOCOg [29]
Segmentation 114.6K SAMv2 [35], MeViS [10]

Stage 3

Temporal Grounding 7.5K QVHighlight [18]
Spatial Grounding 400K AS-V2 [38], Visual Genome [17], RefCOCO [41], RefCOCO+ [41], RefCOCOg [29]

Segmentation 116.5K MeViS [10], SAMv2 [35]
Temporal Reasoning 40K YouCook2 [9], ActivityNet [3]

Conversation 3M VideoChat2-IT [22], ShareGPT-4o [7], LLaVA-Hound-DPO [44], ShareGPT4V [4]

Table 6. Datasets Used at Three Training Stages. The temporal grounding task includes two subtasks: moment retrieval and highlight
detection.

MLP layer called the mask adapter. During training, the127
mask token and adapter are trained with a learning rate of128
2e-5, and the rest of SAM2 is frozen. We use MeViS [10] ,129
SAMv2 [35] for three epochs in this stage with a total batch130
size of 128. We supplement the training data by expanding131
the ASv2 [38] image dataset into videos and adding it to132
this stage.133

Settings of Stage 3. The third training stage aims to134
strengthen the model’s conversational ability using TPO.135
This stage is divided into two parts. The first part in-136
volves training on a combined dataset of all tasks. The137
second part uses a dataset combining both task and conver-138
sation data. For conversatation data, we use VideoChat2-139
IT [22], ShareGPT-4o [7], LLaVA-Hound-DPO [44],140
ShareGPT4V [5] for instruction finetuning. We adopt a141
peak learning rate of 2e-5 for all the model in this stage142
and use a total batch size of 128.143

Model GPU Stage1 Stage2 Stage3

VideoChat-TPO 64 0.5h 11h 52h
textualized task data 64 0.5h 10h 50h
only conversation data 64 - - 42h

Table 7. Training Cost of Three Stages on VideoChat. Textual-
ized task data means converting task data into conversation form.

TPO Additional Training and Inference Cost. From the 144
data perspective, as can be seen from Table ?? in the Ap- 145
pendix, we have very little training data in the first (around 146
0.15M) and second stages (around 0.7M), most of the data 147
(around 3.5M) is used in third phase of the experiment. 148
Among the data in the third stage, most of it is conver- 149
sation data for fine-tuning MLLM. Therefore, TPO intro- 150
duces little new data. Concerning training cost, according 151
Table 7, when using the same amount of data, the train- 152
ing time of our TPO method and the autoregressive method 153
is almost the same, and compared with the version without 154
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visual task, the TPO method increases the training cost by155
about 25%.156

The Temporal Head and the Mask Head contains addi-157
tional encoders. In training phase, the additional encoders158
are frozen, and we use the features extracted by the encoder159
for training. In inference phase, the additional encoders are160
only used when the task head is activated. When only per-161
forming conversation tasks, no additional inference cost is162
incurred.163

Template Details. To support the proper invocation of164
task-specific decoders, we construct a series of instruction165
templates for different tasks and use them as instruction tun-166
ing data for MLLM. We comprehensively list all the instruc-167
tion templates below, in Table 8, 9, 10, and 11.168

3. Qualitative Results169

We evaluate VideoChat-TPO on various visual perception170
tasks and display the visualizations from Figure 1 to Figure171
Figure 4. In addition, we also show the results of multi-172
modal video understanding in Figure 5.173

Spatial Grounding. In Figure 1, we show the spatial174
grounding visualizations. VideoChat-TPO can infer the tar-175
get object from the description of natural language and lo-176
cate it. Our VideoChat-TPO can accurately locate the target177
among multiple similar objects. Even if the target object is178
occluded or in the background area, it can still be accurately179
located.180

Referring Segmentation. We show the visualizations of181
the referring segmentation in Figure 2. VideoChat-TPO can182
delinear the target object in the video according to user in-183
put in complex scenes. Furthermore, VideoChat-TPO can184
separate the target object from multiple objects of the same185
kind according to the description of appearance or action186
characteristics indicated by the user.187

Tracking. The tracking visualizations are shown in Fig-188
ure 3. The user needs to include the bounding box coor-189
dinate information of the first frame of the tracked target190
in the video in the input. The visualizations show that when191
the target object is partially occluded in the video, it can still192
be tracked. Even if the target object is out of the camera’s193
view, our VideoChat-TPO can still track it when it appears194
in subsequent frames.195

Moment Retrieval and Highlight Detection. The visu-196
alizations of the moment retrieval and highlight detection197
are given in Figure 4. Our VideoChat-TPO can infer the198
results and target events based on the user’s questions, and199
perform moment retrieval and highlight detection on the tar-200
get events.201

Multimodal Video Understanding. The multimodal 202
video understanding visualizations are shown in Figure 5. 203
Our VideoChat-TPO achieve decent results in fine-grained 204
action description, spatial description, and video caption- 205
ing. 206
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1. Localize the visual content described by the given textual query ⟨query⟩ in the video, and output the start and end timestamps in seconds.
2. Detect and report the start and end timestamps of the video segment that semantically matches the given textual query ⟨query⟩.
3. Locate and describe the visual content mentioned in the text query ⟨query⟩ within the video, including timestamps.
4. The given natural language query ⟨query⟩ is semantically aligned with a video moment, please give the start time and end time of the video
moment.
5. Find the video segment that corresponds to the given textual query ⟨query⟩ and determine its start and end seconds.

Table 8. Instructions for Temporal Grounding.

1. Track the object in the video using a box with initial coordinates ⟨track box⟩.
2. Use a bounding box with coordinates ⟨track box⟩ to follow the movement of the moving object in the visual input.
3. Given an initial bounding box with coordinates ⟨track box⟩, track the motion of the target object in the sequence of frames.
4. Starting from the box defined by the coordinates ⟨track box⟩, monitor the movement of the object in the video.
5. Utilizing the initial box specified by the coordinates ⟨track box⟩, continuously track and update the location of the object in the video stream.
6. Given a video with an object of interest enclosed in a bounding box with coordinates ⟨track box⟩, generate a sequence of bounding boxes that
track the object’s movement.
7. With an initial box defined by ⟨track box⟩, trace the object’s trajectory by generating a sequence of bounding boxes that follow the object’s
movement in the visual input.
8. Apply an object tracking algorithm to a video, starting with a bounding box defined by ⟨track box⟩.
9. Given a video and an initial bounding box defined by ⟨track box⟩, track the movement of the object within the video.
10. Starting from an initial box defined by ⟨track box⟩, track the movement of the object in the visual input.

Table 9. Instructions for Tracking.

1. Where is ⟨expr⟩?
2. Can you find ⟨expr⟩?
3. Can you detect ⟨expr⟩?
4. Can you locate ⟨expr⟩?
5. Please find ⟨expr⟩.
6. Please detect ⟨expr⟩?
7. Please locate ⟨expr⟩?
8. Find ⟨expr⟩.
9. Detect ⟨expr⟩?
10. Locate ⟨expr⟩?

Table 10. Instructions for Spatial Grounding.

1. Please give the motion path of ⟨obj⟩ in the video over time.
2. Show the tracking trajectory of ⟨obj⟩’s movement through the
scene in the video.
3. Please generate a motion path of ⟨obj⟩’s movement in the video,
highlighting its tracking trajectory.
4. Show the tracking trajectory of ⟨obj⟩.
5. Generate ⟨obj⟩’s tracking trajectory.
6. Visualize the tracking trajectory of ⟨obj⟩ in the video.
7. Please generate a visual representation of ⟨obj⟩’s movement in
the video, highlighting its tracking trajectory.

Table 11. Instructions for Referring Segmentation.
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TPO

Locate white colored 
bus in the image. 

TPO

Please find the orange 
closest to the banana. 

TPO

Can you find this is a woman 
holding a thing of bananas?

TPO

Can you detect the fork 
between the bread 
plate and dinner plate?

TPO TPO

TPO

TPO

TPO

Find brown bread 
vegetable sandwich 
with tooth pick next 
to white bowl.

Please find a plant 
to the right of the 
blue sign in image.

Detect a picture of a 
traffic light with a red 
arrow pointing left lit 
up in the image?

Can you find a mother 
giraffe in the image.

Can you locate 
powdered donut.

Figure 1. Qualitative Results of Spatial Grounding.
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TPO

Please give the motion path of “Dog playing with monkey” in the video over time. 

Please give the motion path of “Sheep with the black head facing down to eat then walking forward” in the video 
over time. 

TPO

Please give the motion path of “people playing with lizard” in the video over time. 

TPO

Please give the motion path of “The darker-colored one among the two dogs playing together” in the video over 
time. 

TPO

Please give the motion path of “Person holding a rope” in the video over time. 

TPO

Figure 2. Qualitative Results of Referring Segmentation.
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Track the object in the video using a box with initial coordinates [13.0, 403.0, 173.0, 586.0].

TPO

Track the object in the video using a box with initial coordinates [456.0, 346.0, 608.0, 631.0]. 

TPO

Track the object in the video using a box with initial coordinates [646.0, 338.0, 783.0, 496.0]. 

TPO

Track the object in the video using a box with initial coordinates [207.0, 120.0, 228.0, 166.0]. 

TPO

Track the object in the video using a box with initial coordinates [662.0, 166.0, 953.0, 719.0]. 

TPO

Figure 3. Qualitative Results of Tracking.
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TPO

The given query happens in 0.0-6.0 seconds. At the beginning of the video, the little girl is putting her hands on the fridge. 
She seems to be curious and is touching the fridge.

Locate and describe the visual content mentioned in the text query 
“what is the girl doing as she put her hands on the fridge at the 
beginning of the video ” within the video, including timestamps.

TPO

The given query happens in 23.0-27.0  seconds. After walking past, the person in white walks back to the child.

Locate and describe the visual content mentioned in the text 
query “what does the person in white do after walking past?” 
within the video, including timestamps.

TPO

The given query happens in 0.0-4.0 seconds. The lady smiled at the start because she was happy to see her dog's enthusiasm 
for the treats she was giving it.

Locate and describe the visual content mentioned in the text 
query “why did the lady smile at the start? ” within the video, 
including timestamps.

TPO

The given query happens in 22.0-29.0 seconds. The shorter girl bends down after opening the orange cabinet because 
she may be searching for something inside the cabinet or reaching for an item on the floor.

Locate and describe the visual content mentioned in the text 
query “why did the shorter girl bend down after opening the 
orange cabinet? ” within the video, including timestamps.

Figure 4. Qualitative Results of Moment Retrieval and Highlight Detection. The orange curve represents saliency score, the blue
interval represents the time interval predicted by the model, and the green interval represents the ground truth.
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TPO

Describe the cat's actions in the video. 

The video shows a cat walking down a street in the rain. The cat is seen walking on the wet ground and passing by 
various objects such as a blue trash can, a brown cardboard box, and a pile of garbage. The cat is also seen walking 
past a pile of garbage bags and a pile of garbage. The video captures the cat's movements and the surrounding 
environment.

TPO

Describe the video in detail. 

The video shows a bird's eye view of a city with a large body of water in the background. The camera pans over the 
city, showing various buildings and structures, including a large building with a dome, a tall building with a clock 
tower, and a large building with a dome. The camera also captures a view of the ocean and a rocky cliff. The video 
provides a detailed view of the city's architecture and the surrounding natural beauty.

TPO

Which cup does the lid go under, the left one, the middle one, or the right one? 

The lid goes under the middle cup. 

(fine-grain action) 

(spatial perception)

(caption)

TPO

Describe the video in detail.

The video shows a person riding a bike down a dirt path in the woods. The camera is mounted on the bike, and we 
can see the rider's legs and feet as they pedal. The path is surrounded by trees, and we can see the shadows of the 
trees on the ground. The rider is wearing a helmet, and we can see the reflection of the trees in the helmet. The video 
is shot during the day, and we can see the sunlight shining through the trees. The rider is wearing a colorful shirt, 
and we can see the colors of the shirt as they ride. Overall, the video shows a peaceful and scenic bike ride through 
the woods.

(caption)

Figure 5. Qualitative Results of Multimodal Video Understanding.
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