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Demo Video and Qualitative Results Available in
Supplementary Materials. We provide a demo video that
illustrates the core concept of 3D-Mem with animations,
along with qualitative results for the continuous embodied
question-answering task. To access all content, please open
“index.html” in a web browser.

6. Full-Set Evaluation
Following the common practice and due to resource limita-
tions, we only evaluate baselines and our method on a sub-
set of A-EQA and GOAT-Bench in our main paper. For ref-
erence, we also evaluate 3D-Mem on the complete bench-
marks, as shown in the following table.

Whole Set Subset
GOAT-Bench Success Rate → SPL → Success Rate → SPL →

3D-Mem (Ours) 62.9 44.7 69.1 48.9

Whole Set Subset
A-EQA LLM-Match → LLM-Match SPL → LLM-Match → LLM-Match SPL →

3D-Mem (ours) 53.3 38.0 52.6 42.0

7. Discussion
7.1. Detailed Experiment Results
A-EQA. Table 4 presents a detailed breakdown of results
on A-EQA across the seven OpenEQA question categories.
As demonstrated in the table, 3D-Mem significantly out-
performs ConceptGraph w/ Frontier Snapshots for ques-
tions requiring spatial reasoning, including spatial under-
standing and object localization where the relative posi-
tions of surroundings is needed to generate better answers.
Such performance gain is attributed to Memory Snapshot,
which visually stores both the foreground inter-object spa-
tial relationships and background room-level spatial cues.
In contrast, ConceptGraph relies solely on object-centric
representations, limiting its ability to capture broader spa-
tial context. For other question categories focus on identi-
fying object-specific variables, i.e., object recognition, at-
tribute recognition, object state recognition, or heavily rely
on external knowledge embedded within VLMs, i.e., world
knowledge, 3D-Mem also showcases comparable perfor-
mance as it ensures the capture of all informative objects
and effectively utilizes the capability of VLMs.

Compared with Explore-EQA, 3D-Mem generally ex-
hibits higher LLM-Match scores in object-related question
categories as we explicitly represents major objects within
the scene by Memory Snapshots, enabling the agent to con-
centrate on relevant elements that may contribute to the final
answer. On the other hand, Explore-EQA has consistently
lower SPL due to its inefficient semantic-map-based explo-

ration mechanism where explicit visual information of fron-
tiers is encoded into an implicit semantic map. 3D-Mem
addresses this limitation by visually capturing glimpses
of unexplored areas with Frontier Snapshots and integrat-
ing them with Memory Snapshots in the decision-making
phase, which provides a more intuitive and holistic view,
enabling it to make more informed and effective choices
during exploration.
GOAT-Bench. Table 5 presents a detailed breakdown of
results on GOAT-Bench across the three question modali-
ties. Comparing 3D-Mem with CG w/ Frontier Snapshots,
we observe that 3D-Mem significantly outperforms CG in
the Object Category and Language modalities. This im-
provement is attributed to 3D-Mem’s memory snapshots,
which provide explicit spatial relationships among objects
and their surroundings, enabling the agent to locate targets
more effectively. The detailed spatial context captured in
the snapshots enhances the agent’s ability to interpret in-
structions that rely on spatial cues. In contrast, 3D-Mem’s
SPL in the Image modality is slightly lower than CG’s, de-
spite a similar Success Rate. This decrease is likely due
to current vision-language models (VLMs) struggling to re-
late images of complex scenes taken from different angles.
When the memory snapshots and the image prompts depict
the same region from different perspectives, the VLM may
become distracted, leading to less efficient navigation paths.
This may highlight a limitation in current VLMs’ ability to
match images across varying viewpoints in complex envi-
ronments.

3D-Mem consistently outperforms both methods across
all modalities in terms of Success Rate and SPL scores.
By enabling the agent to recall previously observed regions
and objects, memory significantly enhances the effective-
ness and efficiency of exploration and reasoning. These
results highlight memory’s essential role in lifelong object
navigation tasks.

7.2. Decision Frequency
Experimentally, the agent queries the VLM and makes a
new decision after moving 1m towards the target. We also
tested an alternative approach where the agent makes a new
decision only after reaching the navigation target. For ex-
ample, if the agent selects a frontier, it navigates directly to
that frontier’s location before making its next choice. How-
ever, this approach results in LLM-match scores and SPL
values of 50.5 and 36.2, respectively, on A-EQA, which are
suboptimal particularly for SPL. Under this setting, we ob-
served numerous cases where the agent initially selects an
incorrect frontier and must fully navigate to it before revis-



Method object
recognition

object
localization

attribute
recognition

spatial
understanding

object state
recognition

functional
reasoning

world
knowledge overall

Blind LLMs

GPT-4* 25.3 - 28.4 - 27.3 - 37.7 - 47.2 - 54.2 - 29.5 - 35.5 -
GPT-4o 22.0 - 25.0 - 27.3 - 40.8 - 50.9 - 61.8 - 38.4 - 35.9 -

Question Agnostic Exploration

CG Scene-Graph Captions* 25.3 - 16.5 - 29.2 - 37.0 - 52.2 - 46.8 - 37.8 - 34.4 6.5
SVM Scene-Graph Captions* 29.0 - 17.2 - 31.5 - 31.5 - 54.2 - 39.8 - 38.9 - 34.2 6.4
LLaVA-1.5 Frame Captions* 25.0 - 24.0 - 34.1 - 34.4 - 56.9 - 53.5 - 40.6 - 38.1 7.0
Multi-Frame* 34.0 - 34.3 - 51.5 - 39.5 - 51.9 - 45.6 - 36.6 - 41.8 7.5

VLM Exploration

Explore-EQA 44.0 19.6 37.1 29.6 55.3 36.0 42.1 6.6 46.3 9.2 63.2 35.7 45.5 22.0 46.9 23.4
CG w/ Frontier Snapshots 45.0 42.0 32.1 25.0 50.8 35.2 32.9 18.7 68.5 38.4 58.8 42.2 45.5 33.5 47.2 33.3
3D-Mem (Ours) 49.0 45.2 48.6 41.3 47.7 38.6 43.4 33.3 69.4 50.3 64.7 47.2 49.1 38.9 52.6 42.0
Human Agent* 89.7 - 72.8 - 85.4 - 84.8 - 97.8 - 78.9 - 88.5 - 85.1 -

Table 4. Performance on A-EQA by Question Categories. For each question categories, there are two columns. The first column stands
for the LLM-Match Score, while the second column represents the SPL score. “CG” denotes ConceptGraphs. Methods with * are reported
from OpenEQA [22]. Columns represent different category of questions in the dataset.

Object Category Language Image Overall

Method Success Rate SPL Success Rate SPL Success Rate SPL Success Rate SPL
Open-Sourced VLM Exploration

3D-Mem w/o memory 55.6 16.0 33.3 15.5 31.8 12.2 40.6 14.6
3D-Mem (Ours) 62.6 33.3 49.5 31.7 35.2 22.7 49.6 29.4

GPT-4o Exploration

Explore-EQA 64.7 48.4 42.9 22.7 56.8 41.8 55.0 37.9
CG w/ Frontier Snapshots 65.3 44.7 55.0 38.9 64.0 52.8 61.5 45.3
3D-Mem w/o memory 69.9 45.4 50.35 30.1 54.4 39.5 58.6 38.5
3D-Mem (Ours) 79.2 55.8 61.9 46.0 65.2 44.2 69.1 48.9

Table 5. Performance on GOAT-Bench by Question Modalities. Evaluated on the “Val Unseen” split. “CG” denotes ConceptGraphs.
Methods denoted by * are from GOAT-Bench.

ing its decision, leading to significant wasted exploration
distance. In contrast, with our default setting, the agent can
adjust its decision en route, mitigating such inefficiencies.
One advantage of the alternative setting, however, is that it
prevents the agent from oscillating between two frontiers,
a problem that can arise in our default setting, particularly
during longer exploration episodes. For this reason, in our
demo, we opted to have the agent navigate to the target be-
fore making the next decision.

7.3. Limitations
We acknowledge several key constraints of 3D-Mem: (1)
Similar to most 3D scene representations, 3D-Mem is de-
signed for static environments and is not robust to moving
objects. (2) The performance of 3D-Mem depends on ob-
ject detection results and VLM reasoning capabilities. (3)
The precise location of the agent is required to accurately
locate the objects in the scene and construct scene mem-
ory, which could be challenging to acquire after long-time
exploration. (4) The latency of the whole pipeline during
embodied QA is still noticeable. We time the detailed la-

tency of each component of our pipeline in Table ??. We
also argue that, although 2D-3D lifting (including SLAM
and object detection) and Prefiltering consume considerable
time, in real-world scenarios, they run concurrently during
navigation, and caching Prefiltering results minimizes their
impact on throughput. The primary bottleneck is VLM in-
ference, which is caused by both heavy model computation
and network latency. This can be mitigated by running the
model locally or optimizing VLMs with techniques such as
model quantization. Additionally, 3D-Mem requires VLM
inference only after each high-level step, thereby reducing
the VLM query frequency.

Component 2D-3D Lift Clustering Prefiltering VLM Inference
A-EQA 2.43 0.04 1.12 3.34
GOAT-Bench 2.79 0.09 1.35 3.58

Table 6. Time cost of each component on A-EQA, evaluated in
seconds.



8. Failure Case Analysis
In Figure 5 to 10, we analyze and categorize the types of
questions where 3D-Mem performs poorly in A-EQA. For
each example question, we provide the ground truth answer,
3D-Mem’s predicted answer, and the memory snapshot se-
lected for answering the question. Each memory snap-
shot includes object detection annotations to better visualize
which objects are detected and incorporated into the scene
graph. These annotations can be zoomed in for a clearer
view. Note that these annotations are not part of the actual
input provided to the VLM.

We generally classify the failures into the following three
categories:
• Dataset Issues. As shown in Figure 5, some questions

in the A-EQA dataset are inherently vague and allow for
multiple reasonable answers. Although the ground truth
answers are generally more appropriate, the VLM often
exhibits overconfidence in its current predictions and ter-
minates the episode prematurely.

• Limitations of the VLM. Many questions fail due to the
limited perception capabilities of the VLM, which can be
further divided into two subcategories. In the first case,
as shown in Figure 6, the correct memory snapshot is se-
lected, but the predicted answer is incorrect. This often
occurs when the target objects in the snapshots are small,
and the limited image resolution (360↑360) makes it dif-
ficult for the VLM to identify them. In the second case, as
shown in Figure 7, the VLM selects the wrong memory
snapshot entirely and produces unreasonable answers.

• Limitations of the Object Detection Model. 3D-Mem
relies on an object detector to identify and add new ob-
jects to the scene graph. However, the object detector
can sometimes produce incorrect labels, as shown in Fig-
ure 8. In most cases, the prefiltering process successfully
filters out these incorrect labels, as they are often highly
irrelevant. Additionally, the VLM is generally capable
of recognizing and ignoring such errors. However, cer-
tain situations, as in Figure 9, illustrate cases where the
detector mislabels objects—such as detecting a TV as a
fan or a cloth rack as a ladder. These misclassifications
can confuse the VLM, especially when the incorrect la-
bels closely align with the expected answer. In addition to
incorrect detections, the target objects for answering the
questions are detected at all. As shown in Figure 9, if the
car or the monitor had been detected in the relevant snap-
shots, the question could have been answered correctly.
However, since these objects were not detected and in-
cluded in memory, the VLM could not select an appropri-
ate memory snapshot, and the agent eventually exceeded
the step limit. Interestingly, in some cases, as shown in
Figure 10, even when the target objects are not detected,
they remain visible in other memory snapshots that pass
the prefiltering process. In these cases, the VLM is still

able to answer the question successfully. This demon-
strates that 3D-Mem is more robust than traditional 3D
scene graph approaches.

9. Details of Frontier-based Exploration
Framework

Our frontier-based exploration framework is based on the
framework in Explore-EQA [28]. We enhance its robust-
ness and adapt it to our multi-view images representation
framework. A 3D grid-based occupancy map M , repre-
senting the length, width and height of the entire room, is
used to record the occupancy, with each voxel having a side
length of 0.1 meters. During exploration, each depth obser-
vation, together with its corresponding observation pose, is
used to map unoccupied spaces onto the initially fully oc-
cupied M . The navigable region is then defined as the layer
of unoccupied voxels at the height of 0.4 meters above the
ground where the agent moves. Within this navigable re-
gion, the area within 1.7 meters of the agent’s trajectory is
defined as the explored region, while the remainder is des-
ignated as the unexplored region, as illustrated in Figure 11.

Frontiers are defined as clusters of pixels in the unex-
plored region. Pixels in the unexplored region are clustered
into different groups using Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN), with each
group consisting of connected pixels. Each frontier F =
↓r, p, Iobs↔ represents such a pixel group r. The naviga-
ble location of the frontier p is determined at the boundary
between the frontier region and the explored region, and
an image observation Iobs is captured once the frontier has
been updated. As shown in Figure 11, each purple arrow
together with a green region it points to is a frontier. For a
frontier to be meaningful, r must contain more than 20 pix-
els; otherwise, the frontier will not be created. A frontier is
considered updated if the intersection-over-union (IoU) be-
tween the new and previous regions r is less than 0.95. Ad-
ditionally, if r spans more than 150→ in the agent’s field of
view, it is split into two regions using K-Means clustering,
resulting in two separate frontiers. This approach allows
for more flexibility in choosing navigation directions. Also,
it is important to note that this format for representing 3D
space does not currently support scenes with multiple floors.
Consequently, our results in Table 1 fall significantly short
of human performance, as many of the questions in A-EQA
require exploration across different floors.

When prompting the VLM, only the image observations
are included in the prompt. If the VLM chooses a frontier
F , the location p is used as the agent’s navigation target.

10. More Details in Experiments
At each step t, we take N = 3 egocentric views, each with
a gap of 60→. The egocentric views are captured at a resolu-



Figure 5. Failure Case 1: Some questions in A-EQA are vague and may have multiple reasonable answers.

Figure 6. Failure Case 2: Due to limitations in perception capabilities and image resolution, the VLM cannot provide the correct answer
even when the memory snapshot is correctly chosen.

tion of 1280↑ 1280 for better object detection and are then
resized to 360 ↑ 360 as frame candidates for VLM input.
Frontier snapshots are initially captured at 360 ↑ 360. We

use YOLOv8x-World, implemented by Ultralytics, as our
detection model and a 200-class set from ScanNet [3] as the
detection class set. We set a maximum of 50 steps for each



Figure 7. Failure Case 3: In some cases, the VLM selects an entirely incorrect memory snapshot and produces unreasonable answers.

Figure 8. Failure Case 4: Incorrect labels predicted by the object detector can mislead the VLM. Although the VLM can often ignore such
errors, in certain cases, these misclassifications cause confusion.

task.



Figure 9. Failure Case 5: Some target objects are not added to the scene graph due to missed detections by the object detector. The memory
snapshot shown above is where the target object should have been detected and assigned to.

Figure 10. A similar scenario to Figure 9, where the target objects are not detected. However, as they are still visible in other memory
snapshots, the VLM still successfully answers the questions.

10.1. Implementation Details for A-EQA

As explained in detail in Section 3.2, we integrate 3D-
Mem into the frontier-based exploration framework. The
VLM directly returns an answer after identifying visual

clues from certain memory snapshots. We set the number
of egocentric observations at each step N = 3, the maxi-
mum distance for objects to be included in the scene graph
max dist = 3.5, and the number of prefiltered classes



Figure 11. A illustration of different regions and frontiers in the
frontier-based exploration framework. Note that navigable region
consists of explored and unexplored regions.

K = 10.

10.2. Implementation Details for EM-EQA
To adapt 3D-Mem to the EM-EQA benchmark, we first con-
struct 3D-Mem for each scene using the given RGB-D ob-
servations and corresponding camera poses. For each ques-
tion, we then apply prefiltering to the memory snapshots
using different K values (1, 2, 3, 5, 10), and utilize the re-
sulting filtered snapshots as prompts for GPT-4o to generate
the answers.

10.3. Implementation Details for GOAT-Bench
We reformulate the navigation task into the embodied
question answering format by filling in templates for
three types of target descriptions: “Can you find the
{category}?”, “Can you find the object described as
{language description}?”, and “Can you find the object cap-
tured in the following image? {image}”. We adapt the
prompt for navigation tasks as described in Section 3.3, al-
lowing the VLM to choose an object directly from a mem-
ory snapshot. After the VLM identifies an object in such
a way, the agent navigates to a location near that object
to complete the task. We evaluate both GPT-4o and open-
sourced VLM (specifically LLaVA-7B [20]) as the choice of
VLM. For LLaVA-7B model, we further fine-tune it on our
generated dataset for better performance (see Appendix 12
for more details). Other hyperparameter settings are the
same as the experiments on A-EQA.

11. Details of the Active Exploration
When prompting the VLM for embodied question answer-
ing (A-EQA Benchmark), as shown in Figure 17, we ap-
pend each memory snapshot with the object classes it con-
tains. However, we only append classes that are within the
prefiltered class list. For frontier snapshots, only the raw

Figure 12. Overview of the frontier-based exploration pipeline
with 3D-Mem on embodied question-answering task.

snapshot images are used as input. The VLM will then re-
spond with either a frontier snapshot or a memory snap-
shot. If the VLM returns a frontier, we set the location p as
the navigation target. If the VLM returns a memory snap-
shot along with the answer, although we directly conclude
the navigation episode in our A-EQA experiments, we also
set a navigation target for that memory snapshot. This al-
lows the agent to move closer to the snapshot region, refine
the selected memory snapshot, and potentially reconsider
its choice.

The navigation location for a memory snapshot is deter-
mined by several conditions. We set the observation dis-
tance, obs dist, to 0.75 meters. If the snapshot contains
only one object, the location is set obs dist away from the
object, in the direction from the object’s location toward
the center of the navigable area that is obs dist around the
object. If the memory snapshot contains two objects, the
location is set obs dist away from the midpoint of the two
objects, in the direction of the perpendicular bisector of the
line segment connecting the objects. If the memory snap-
shot contains more than two objects, we first perform Prin-
cipal Component Analysis (PCA) on the object cluster to
obtain the principal axis with the smallest eigenvalue. The
navigation location is then set obs dist away from the cen-
ter of the object cluster, in the direction of this principal
axis. Note that, in all cases for determining the navigation
location, we always ignore the height of the objects and treat
them as 2D points. Additionally, the above algorithm can
be randomized by assigning the highest probabilities to the
aforementioned positions.

Embodied navigation tasks (GOAT-Bench Benchmark)
work similarly, with the following differences: 1) we ap-
pend the object crop after each class name when prompting
the VLM, as shown in the prompt in Figure 18; 2) when
the VLM returns an object choice, we treat that object as a
memory snapshot containing one object and follow a simi-
lar method to set the navigation location.

After a navigation target is set (either a frontier or a



memory snapshot), the agent moves towards it along a path
generated by the pathfinder in habitat-sim [25, 31, 34]. Al-
though we utilize the pathfinder, which uses prior informa-
tion from a global navmesh to find the shortest paths, we can
easily replace it with a simple path-finding algorithm based
on the navigable map described in Appendix 9. Step t ends
after the movement. Then in the new step t + 1, the agent
updates the frontiers and memory snapshots and makes the
next decision.

12. Details of Training Open-Sourced VLMs
for GOAT-Bench Navigation

12.1. Training Dataset Collection
In GOAT-Bench [16], each navigation target is described by
three types of descriptors: category, language, and image.
We generate training data based on their provided explo-
ration data, sourced from 136 scenes in HM3D [27] train-
ing set. In each scene, a set of navigation targets is provided,
each consisting of an object ID, location, category, language
description, and multiple viewpoints and angles for captur-
ing image observations. In total, the training set includes
3669 such objects, which we use as navigation targets to
generate training data in our framework’s format.

We adapt our exploration pipeline for data generation.
For each navigation target, we first randomly select an ini-
tial point on the same floor. We then use the pathfinder in
habitat-sim [25, 31, 34] to find the shortest trajectory to the
target. At each step, if the target object is present in a mem-
ory snapshot, we use that memory snapshot as the ground
truth and move one step toward a location near it; if the tar-
get object is not present in any memory snapshot, we select
the frontier closest to the shortest trajectory as the ground
truth for that step and move one step toward that frontier.
On average, we collect 4 exploration paths per target ob-
ject from different initial points, with each path consisting
of approximately 12 steps.

We also collect the ground truth for prefiltering by
prompting GPT-4o. For each navigation target, we collect
all objects that can be seen along the exploration path and
feed them, together with the description, into GPT-4o. We
ask GPT-4o to rank all visible objects based on their help-
fulness in finding the navigation target. For each navigation
target, we collect three such rankings corresponding to three
types of descriptions.

12.2. Training Process
We fine-tune our model based on the LLaVA-1.5-7B
checkpoint[20] using the collected training dataset for 5
epochs with a learning rate of 4e-6 and a batch size of 1.
We use the AdamW optimizer with no weight decay. Dur-
ing training, DeepSpeed ZeRO-2 and LORA [11] are used
to save GPU memory and accelerate training. FP16 is en-

abled to balance speed and precision. We train our model
with 6↑24 Tesla V100 GPUs, and the fine-tuning process is
completed within 6 hours.

We use the default CLIP vision encoder of LLaVA to en-
code all memory snapshots, frontier snapshots, egocentric
views and image navigation targets. And the encoded vi-
sion features are further compressed to 12 ↑ 12 (for image
targets and egocentric views) and 3 ↑ 3 (for memory snap-
shots and frontier snapshots) tokens in the training prompt.

During fine-tuning, we simultaneously optimize the
model for exploration task and prefiltering task with cross-
entropy loss. The loss weights for exploration and prefilter-
ing are set to 1 and 0.3, respectively. The training goal of
exploration is to correctly predict the ground truth choice
of memory snapshot or frontier at each step. The training
goal of prefiltering is to select the top 10 helpful objects that
have been observed, based on the ground truth we collected
earlier.

13. Ablation Study
13.1. Ablation on Hyperparameter Choices
We mainly evaluate on the number of egocentric observa-
tions at each step (N ), the maximum distance an object
should be included in the memory snapshot (max dist),
and the number of prefiltered classes (K).

Figure 13. Ablation on the number of observation each step (N )
for A-EQA and GOAT-Bench.

In Figure 13, we present the evaluation metrics for dif-
ferent choices of N on both A-EQA and GOAT-Bench. We
can observe that increasing the number of observations does
not necessarily lead to better performance. This is mainly
because the additional views often provide repeated and re-
dundant information. Furthermore, as the number of frame
candidates increases, a cluster of objects that would origi-
nally be assigned to one memory snapshots may instead be
assigned to separate memory snapshots, resulting in con-
fusion. Based on the results, we choose N = 3 for both
datasets.

In Figure 14, we present the evaluation metrics for dif-
ferent choices of max dist on both A-EQA and GOAT-
Bench, where we observe different tendencies across the
two benchmarks. Evaluation metrics on GOAT-Bench gen-
erally improve with an increase in max dist, while metrics



Figure 14. Ablation on the maximum distance for including an ob-
ject to the scene graph (max dist) for A-EQA and GOAT-Bench.

on A-EQA decline. This is because, under normal circum-
stances, a memory snapshot should only represent objects
within a local area. Objects in more distant regions should
either remain in unexplored areas or be captured by another
memory snapshot that is closer to them. A large max dist
imposes a looser distance restriction, which can introduce
disorder. However, in the navigation task of GOAT-Bench,
the earlier the target object is added to the scene graph as a
choice for the VLM, the faster the VLM can select it as the
direct navigation target, resulting in faster arrival at the tar-
get objects. Balancing both accuracy and efficiency across
the two benchmarks, we choose max dist to be 3.5 meters.

Figure 15. Ablation on the number of prefiltered classes (K) for
A-EQA and GOAT-Bench.

In Figure 15, we present the evaluation metrics for differ-
ent choices of K on both A-EQA and GOAT-Bench. In ad-
dition to the metrics introduced in the experiment sections,
we include the average ratio of the number of remaining
memory snapshots after prefiltering to the total number of
memory snapshots as a measure of the effectiveness and in-
tensity of prefiltering. The results on both benchmarks align
with our intuition: allowing more prefiltered classes leads to
better performance. Moreover, even when K = 10, on av-
erage only 3.26 and 4.66 memory snapshots are left after
prefiltering for A-EQA and GOAT-Bench respectively, ac-
counting for 29.8% and 28.1% of the total memory snap-
shots, and 8.2% and 5.1% of the total frame candidates.
These statistics demonstrate the effectiveness of prefilter-
ing as a memory retrieval mechanism, as well as 3D-Mem’s
compactness as a scene representation. Furthermore, we
observe that the overall performance does not drop signifi-
cantly when K is small, highlighting the robustness of our
framework.

13.2. Ablation on Pipeline Components
Ablation study on Prefiltering is infeasible because directly
querying the VLM would exceed its context length. How-
ever, we conduct an ablation on Frontier Snapshots by al-
ways navigating to the nearest frontier when Memory Snap-
shots cannot provide the answer, rather than choosing a
frontier via VLM. As shown in Table 7 (SnapMem w/o FS),
performance declines on both A-EQA and GOAT-Bench,
though the drop is smaller on GOAT-Bench. This is likely
due to the lifelong setting of GOAT-Bench, where the agent
tends to rely on its memory once the scene is mostly ex-
plored. Additional experiments removing both Frontier
Snapshots and memory maintenance (SnapMem w/o FS &
Mem) confirm this pattern.

A-EQA GOAT-Bench
Method LLM-Match → LLM-Match SPL → Success Rate → SPL →

SnapMem w/o FS & Mem - - 57.2 33.2
SnapMem w/o FS 49.3 31.0 63.7 46.8
SnapMem 52.6 42.0 69.1 48.9

Table 7. Ablation study of Frontier Snapshot on A-EQA and
GOAT-Bench. FS denotes ”Frontier Snapshots”.

14. Other Related Works
While our work focuses on comparing to 3D scene rep-
resentations, prior research on 2D scene representations,
particularly in topological mapping for navigation, is no-
table. Methods like Topological Semantic Graph Mem-
ory [17] and RoboHop [6] similarly represent environments
as graphs using images and objects, where nodes corre-
spond to images of navigable places and edges denote nav-
igability.

Our proposed 3D-Mem first differs from these topologi-
cal mapping methods in its focus and design. 3D-Mem fo-
cuses on capturing all salient objects in the scene by a mini-
mum number of memory snapshots. Each memory snapshot
is designed to capture the visual features of a cluster of ob-
jects in the nearby region, along with their spatial relation-
ships and surrounding environment. Objects are uniquely
assigned to one memory snapshot, making the representa-
tion informative, comprehensive, and compact—key qual-
ities for leveraging vision-language models (VLMs) with
limited context length to interpret and reason over visual
data. In contrast, the images in topological map in [17]
are primarily designed to represent landmarks for naviga-
tion, without attempting to capture all informative aspects
of the scene or focusing on visually representing all ob-
jects in a 3D environment. The images in the representation
in [6], though focused on object segments, are not compact,
containing redundancy between consecutive frames, and the
images still serve as navigation landmarks rather than visual
representations of inter-object relationships.

In addition, 3D-Mem introduces the concept of frontier



snapshots to explicitly model unexplored regions, allowing
agents to make informed decisions about where to explore
next to expand knowledge—an active exploration capabil-
ity not addressed in previous 2D methods. Moreover, the
structure of 3D-Mem enables the memory retrieval mecha-
nism of Prefiltering, which manages the memory scalabil-
ity and efficiency over extended operations, supporting life-
long learning that is absent in the aforementioned works.
Lastly, like other 3D scene graphs, 3D-Mem stores the 3D
information of the objects and snapshots. Based on this in-
formation, as in the practice of ConceptFusion [14], a set
of spatial relationship comparators can be called by LLMs
as queries, e.g., querying the distance between A and B
by calling “howFar(A, B)”. This information is cannot be
stored in those 2D representations.

15. Complete Prompts for VLMs
We present the full prompt for prefiltering in Figure 16, the
prompt for embodied question answering (A-EQA dataset)
in Figure 17, and the prompt for navigation (GOAT-Bench
dataset) in Figure 18.



Figure 16. Prompt for prefiltering. The placeholders {question} and {class i} are replaced by the question and all existing classes in the
scene graph, respectively.



Figure 17. Prompt for embodied question answering. The placeholders {question} and {class i} are replaced by the question and the object
classes contained in the corresponding memory snapshots, respectively. [img] are replaced by the egocentric views, memory snapshots or
frontier snapshots.



Figure 18. Prompt for GOAT-Bench dataset. The placeholders {question} and {class i} are replaced by the question and the object classes
contained in the corresponding memory snapshots, respectively. [img] are replaced by the egocentric views, memory snapshots or frontier
snapshots, and [img crop i] are replaced by the corresponding object crops, which are directly cropped from the memory snapshots based
on the detection bounding boxes.
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