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A. Implementation Details
A.1. POT Optimization
We follow [S2] to solve the Partial Optimal Transport (POT)
problem. In particular, the POT problem with entropic regu-
larization in Eq. (6) can be rewritten as a Kullback-Leibler
projection:

min
T∈Π(V,A)

⟨T,C⟩F − ϵh(T) = ϵ min
T∈Π(V,A)

KL(T|D) , (A)

in which D = exp
(
− C

ϵ

)
and KL(·|·) denotes the Kullback-

Leibler divergence:

KL(T|D) ≜
M,N∑

m,n=1

Tm,n

(
log

(
Tm,n

Dm,n

)
− 1

)
. (B)

According to the definition in Eq. (5), Π(V,A) constitutes
an intersection of two convex sets: C = C1 ∩ C2, where

C1 = {T ∈ RM×N
+ ;T1N = V} , (C)

C2 = {T ∈ RM×N
+ ;T⊤1M ⩽ A} . (D)

We follow Dykstra’s algorithm [S3] to iteratively solve the
above convex optimization problem in the Kullback-Leibler
setting [S1]. To begin with, we assume

∀ i ∈ N, Ci+2 = Ci . (E)

With the initialization:

T(0) = D , q(0) = q(−1) = 1 , (F)

Dataset (↓) Train Images Test Images Classes Attributes

Aquatic 318 319 7 (4+3) 385
Aerial 5000 5000 20 (10+10) 1229
Game 788 787 59 (30+29) 390
Medical 93 89 12 (6+6) 390
Surgery 912 917 13 (6+7) 808

Table A. Statistics of the five datasets. “7 (4+3)” in the “Classes”
column means that there are a total of 7 classes in the Aquatic
dataset, of which 4 classes are known (K) in Task 1 (or previously
known (PK) in Task 2), 3 classes are unknown (U) in Task 1 (or
currently known (CK) in Task 2), and so on.

Dataset (→) Aquatic Aerial Game Medical Surgery

Known Classes 4 / 4 8 / 10 5 / 30 0 / 6 0 / 6
Unknown Classes 3 / 3 8 / 10 3 / 29 1 / 6 2 / 7

Table B. Statistics of the class overlap with the pretraining datasets
of OWL-ViT [S5]. “5 / 30” in the “Game” column means that there
are 30 known classes in the Game dataset, of which 5 classes are
also in the pretraining datasets of OWL-ViT, and so on.

the iterative calculations in step i are defined as

T(i) = argmin
T(i)∈Ci

KL
(
T(i)|T(i−1) ⊙ q(i−2)

)
, (G)

q(i) = q(i−2) ⊙ T(i−1)

T(i)
, (H)

where “⊙” denotes the Hadamard product. The above calcu-
lation converges to

T(i) → argmin
T(i)∈C

KL
(
T(i)|D

)
as i → ∞ . (I)

We use a threshold γ = 1× 10−6 to stop the iteration, i.e., if
∥T(i) −T(i−1)∥ < γ, then T(i) is returned as the final POT
solution for Eq. (6).

A.2. Dataset Statistics
Tab. A shows the statistics (i.e., the numbers of training/test
images, classes, and attributes in the attribute pool) of the
five datasets used in our experiments. These datasets are
designed for the few-shot or low-data setting, recognizing
that most real-world applications cannot gather datasets at
the scale of traditional benchmarks. As shown in Tab. B, 77
out of 111 object classes were never seen during pretraining
of the vision foundation model we use. Tab. C provides the
performance comparison on different few-shot settings.

Following former works [S4, S7, S8], attributes were
generated by prompting a Large Language Model, i.e.,
GPT-3.5, with known class names. These attributes are
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Dataset (→) Aquatic Aerial Game Medical Surgery Overall
Task ID (→) Task 1 Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2 Task 1 Task 2

U K PK CK U K PK CK U K PK CK U K PK CK U K PK CK U K PK CK

B/16 Backbone, 1-Shot:
BASE-FS 7.1 25.7 22.8 20.4 1.2 6.4 6.8 6.7 16.0 2.1 1.6 1.4 0.6 3.7 3.8 3.7 1.3 4.7 5.7 5.3 5.2 8.5 8.1 7.5
FOMO [S8] 14.2 22.2 18.4 19.9 2.0 6.1 6.0 6.3 5.9 1.7 1.2 1.1 0.8 3.9 2.9 2.8 2.3 5.4 5.3 5.3 5.0 7.9 6.8 7.1
PASS (Ours) 14.9 13.2 12.7 18.8 3.5 11.5 10.6 8.5 10.4 1.8 1.2 1.9 9.5 3.0 3.0 6.5 14.2 7.9 7.3 12.0 10.5 7.5 6.9 9.5
B/16 Backbone, 10-Shot:
BASE-FS 7.1 37.8 37.9 28.1 1.2 8.6 8.7 1.8 16.0 4.1 4.2 3.1 0.6 5.9 5.9 1.7 1.3 11.9 11.3 9.6 5.2 13.7 14.0 8.9
FOMO [S8] 10.0 37.4 36.2 29.8 1.3 9.5 9.8 2.0 11.0 3.8 4.1 3.3 4.8 5.9 6.0 1.2 13.1 12.9 14.4 10.7 8.0 13.9 14.1 9.4
PASS (Ours) 17.0 31.7 31.4 29.1 2.3 15.5 15.8 2.5 11.5 7.1 8.6 10.5 9.4 5.5 4.7 4.6 14.6 12.8 13.2 16.7 11.0 14.5 14.8 12.7
B/16 Backbone, 100-Shot:
BASE-FS 7.1 41.1 41.1 31.9 1.2 10.4 10.1 4.0 16.0 4.6 4.8 3.9 0.6 6.1 6.1 3.3 1.3 11.9 11.3 10.9 5.2 14.8 14.7 10.8
FOMO [S8] 3.5 43.8 44.1 40.8 0.9 12.0 12.6 5.4 13.3 3.8 4.4 4.1 2.1 6.4 5.5 11.5 6.1 12.7 12.9 11.0 5.2 15.7 15.9 14.6
PASS (Ours) 5.2 43.4 43.2 46.6 1.9 14.0 16.0 7.0 21.5 10.0 7.7 9.0 4.9 8.4 6.8 12.1 14.3 15.6 13.1 14.7 9.6 18.3 17.4 17.9

L/14 Backbone, 1-Shot:
BASE-FS 2.4 18.1 17.4 16.9 9.7 15.8 15.9 13.2 8.2 9.0 8.7 5.8 1.1 20.8 20.2 21.3 3.6 25.0 24.2 11.1 5.0 17.7 17.3 13.7
FOMO [S8] 18.0 18.1 17.4 17.0 3.1 15.6 15.7 12.7 28.3 7.2 5.2 4.6 6.1 20.5 14.8 22.7 11.5 25.0 24.3 11.4 13.4 17.3 15.5 13.7
PASS (Ours) 18.5 22.6 20.3 19.2 5.5 27.4 26.8 17.4 28.7 9.4 7.3 7.1 7.5 20.6 14.9 24.2 13.4 27.1 23.6 21.1 14.7 21.5 18.6 17.8
L/14 Backbone, 10-Shot:
BASE-FS 2.4 37.0 36.5 27.6 9.7 21.8 21.1 6.8 8.2 11.4 11.2 12.7 1.1 27.3 25.8 27.5 3.6 24.1 23.7 7.6 5.0 24.3 23.7 16.4
FOMO [S8] 12.8 37.2 36.5 27.6 5.6 22.0 21.5 7.9 30.3 11.6 10.6 11.2 13.6 25.4 24.0 33.0 11.3 26.8 28.0 11.3 14.7 24.6 24.1 18.2
PASS (Ours) 19.3 36.5 35.1 30.5 6.2 33.8 33.1 8.3 33.5 22.7 22.8 24.4 12.9 25.2 20.8 35.4 16.4 37.7 39.3 36.3 17.6 31.2 30.2 27.0
L/14 Backbone, 100-Shot:
BASE-FS 2.4 43.6 42.9 42.8 9.7 23.7 21.9 13.0 8.2 10.4 10.2 13.4 1.1 23.2 21.7 24.2 3.6 26.0 25.0 7.4 5.0 25.4 24.3 20.2
FOMO [S8] 18.2 50.1 48.1 47.1 6.0 25.3 23.7 16.0 30.4 10.7 9.9 11.2 9.4 21.8 19.9 34.6 12.0 29.0 28.9 8.5 15.2 27.4 26.1 23.5
PASS (Ours) 21.7 53.9 56.6 58.3 8.4 34.2 36.1 20.2 36.0 24.3 23.7 26.3 13.1 34.3 30.0 32.0 16.6 45.6 47.9 43.3 19.1 38.5 38.9 36.0

Table C. OWOD results with different few-shot regimes on the five real-world object detection datasets. The evaluation on each dataset is
divided into two tasks, and we report U-, K-mAP for Task 1, and PK-, CK-mAP for Task 2, which are introduced in Sec. 5.1. Best overall
results are highlighted in each column.

grouped into 10 different types: shape, color, texture,
size, context, features, appearance, behavior, environment,
and material. Accordingly, each attribute is described
in the template of “object which (is/has/etc)
<TYPE> is <ATTRIBUTE>”, e.g., object which
(is/has/etc) shape is straight. Tab. G fur-
ther illustrates the top selected attributes for each dataset
using our proposed PASS.

A.3. Model Implementations
For few-shot training, we follow [S8] to feed an image and
its corresponding ground truth bounding box into the pre-
trained OWL-ViT [S5] model to generate predicted bounding
boxes and class embeddings. The class embeddings were
filtered based on their associated bounding boxes, ensuring
that only those with an intersection over union (IoU) of at
least 0.8 with the ground-truth object were retained. From
the filtered class embeddings, we selected the one farthest
from the mean of all the filtered embeddings to produce the
final image output. During training, we also follow [S8] to
optimize attributes with an additional adaptation loss that
minimizes the domain gap between attributes and the ex-
tracted class embeddings. Prompt ensembling is also used to
produce the final attribute embeddings, by averaging the text

embeddings obtained from the 7 most effective CLIP prompt
templates [S5, S6]. The trade-off parameter λ in Eq. (10) is
set to 5, whose sensitivity is discussed in Fig. B.

B. Additional Results and Analysis
B.1. Results in More Few-Shot Settings
In real-world applications, low-data scenarios are often en-
countered, making it important to evaluate the performance
of the proposed PASS and existing baselines under different
few-shot settings. Tab. C presents the results for the 1-, 10-,
and 100-shot regimes. In the 1-shot regime, the improvement
of PASS over baselines is less pronounced, likely due to the
extremely limited training data. However, in the 10- and 100-
shot regimes, PASS demonstrates stronger performance with
greater improvements over the baselines. This highlights the
efficiency of our method in effectively utilizing additional
training data, enabled by our proposed attribute curation
strategy grounded in the POT theory.

B.2. Effect of Attribute Selection
B.2.1. Effect of Target Attribute Number
In our experiments, the target attribute number N ′ to be se-
lected for each dataset is determined so that the average num-
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Dataset (→) Aquatic Surgery

U K U K

B/16 Backbone:
PASS (N̄ ′ = 10) 3.7 42.8 15.7 12.8
PASS (N̄ ′ = 25, default) 5.2 43.4 14.3 15.6
PASS (N̄ ′ = 40) 4.8 40.3 10.9 12.4

L/14 Backbone:
PASS (N̄ ′ = 10) 18.2 47.2 15.8 40.6
PASS (N̄ ′ = 25, default) 21.7 53.9 16.6 45.6
PASS (N̄ ′ = 40) 19.4 44.0 17.7 46.5

Table D. Effect of target attribute number. We report U-mAP
(U) and K-mAP (K) on two representative datasets: Aquatic and
Surgery, with Task 1 evaluation in the 100-shot regime. Best results
are highlighted in each column.

pID (→) Max Mean Mah. Max+Mean Max+Mah.

Known-mAP 45.6 45.4 45.8 45.6 45.9
Unknown-mAP 16.6 16.6 16.7 16.6 17.0

Table E. OWOD results using different choices of pID. Performance
on Surgery (100-shot, Task 1) with L/14 backbone is reported.

Method (→) FOMO [S8] PASS

Training Stage (→) Stage 1 Stage 2 Stage 3 Total –

B/16 Backbone 01:22 00:01 04:36 05:59 03:26
L/14 Backbone 03:18 00:01 21:18 24:37 05:35

Table F. Training time comparison between FOMO [S8] and our
proposed PASS on the Aquatic dataset (100-shot, Task 1).

ber of selected attributes per known class (denoted as N̄ ′) is
25, following [S8]. Here, we analyze the impact of varying
the number of target attributes. As presented in Tab. D, set-
ting N̄ ′ to 25 generally delivers strong performance in most
scenarios. However, in certain cases, increasing the number
of target attributes further enhances the results, highlighting
the ability of our proposed PASS to effectively leverage a
greater number of available attributes.

B.2.2. Effect of Curriculum Steps

As we incorporate a curriculum schedule into the attribute se-
lection process during training, here we evaluate the impact
of varying the curriculum step size (η). Fig. A illustrates the
performance across different values of η. Notably, larger η
results in a smoother selection process, as fewer attributes are
filtered out at each step, and we can observe that a moderate
η often achieves favorable results. Importantly, our method
demonstrates relatively low sensitivity to this hyperparame-
ter, highlighting the robustness of the proposed approach in
effective attribute selection and optimization.
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Figure A. Effect of curriculum steps. We report the average of U-
and K-mAP on two representative datasets: Aquatic and Surgery,
with Task 1 evaluation in the 100-shot regime.
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Figure B. Effect of λ in Eq. (10). We report the average of U- and
K-mAP on two representative datasets: Aquatic and Surgery, with
Task 1 evaluation in the 100-shot regime.

B.3. Additional Hyperparameter Analysis
We introduce an additional hyperparameter, λ, in Eq. (10) to
balance the contributions of the classification loss and the
POT loss. As shown in Fig. B, the performance varies with
different λ values, with the best results generally achieved
when λ is set to 5—ensuring that the POT loss is of a similar
magnitude to the classification loss. Notably, our method
demonstrates relatively low sensitivity to changes in λ, em-
phasizing its robustness in accurately delivering attributes to
the need for specific detection tasks.

B.4. Choices of pID
While we adopt the choice of pID in Eq. (11) from
FOMO [S8] for fair and direct comparisons, there are still al-
ternative choices. Tab. E presents experimental results using
max/mean of attribute relevance (Max/Mean), Mahalanobis
distance (Mah.), and their combination (average). While
Max and Mean yield similar mAPs, Mean often achieves
higher Recalls but lower Precisions, probably due to its
broader attribute dependence. Since these methods excel
in different facets of the distribution, their combination can
sometimes produce better overall results. We leave the ex-
ploration of more sophisticated pID designs in future work.

B.5. Training Time Comparison
We provide training time ([minutes]:[seconds]) comparison
between FOMO [S8] and our proposed PASS in Tab. F using
the same NVIDIA RTX A6000 GPU. We use FOMO’s best
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hyperparameters: 5K and 780 iterations for stage 1 and stage
3 training. For fair comparisons, PASS is also trained for 5K
iterations, which likewise yields the best performance. While
being efficient in stage 1 (attribute selection) and stage 2
(attribute adaptation), FOMO’s stage 3 (attribute refinement)
requires iteratively performing forward passes through the
foundation model, significantly increasing the training time.
Grounded in POT theory, our proposed PASS integrates
all three stages into a single, efficient end-to-end training
process, eliminating the need for redundant forward passes
and significantly reducing training time while improving
detection results.

B.6. More Qualitative Results
B.6.1. Detection Results
Fig. C presents additional visualizations of the detection
results, complementing those in Fig. 3, with all results pro-
duced using the 100-shot L/14 models. Our proposed PASS
consistently demonstrates improved detection performance
compared to FOMO [S8], producing results that more closely
align with ground-truth annotations. This highlights the ef-
fectiveness of PASS in selecting and optimizing relevant
and useful attributes. Additionally, we include examples of
failure cases in which neither FOMO nor PASS achieves
satisfactory results. For instance, in the Medical dataset, ac-
curately identifying finger bones remains challenging, likely
due to the limited and ambiguous nature of the training data.
These observations underscore the complexity of OWOD in
real-world scenarios, highlighting that significant challenges
persist and warrant further research in this domain.

B.6.2. Selected Attributes and ID Scores
Tab. G presents the top selected attributes identified by our
proposed PASS method, with all results generated using
the 100-shot L/14 models. Most of the selected attributes
are found to be highly relevant and beneficial for specific
object detection tasks. For instance, in the Surgery dataset,
the shape attribute “pointed tips” can be effective in
detecting surgical tools. These findings further demonstrate
the effectiveness and interpretability of PASS in identifying
both known and unknown object classes through the use of
selected and optimized attributes.
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Aquatic Aerial Game Medical Surgery

Figure C. Visualization of detection results on the five real-world datasets. First Row: images in each dataset with ground truth bounding
boxes and class names. Second Row: Detection results using FOMO [S8]. Third Row: Detection results using our proposed PASS. The
Fourth to Sixth Rows follow the same pattern. We use green and yellow boxes to indicate known and unknown objects, respectively.
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Attribute Type (↓) ID Score 1 Selected Attribute 1 ID Score 2 Selected Attribute 2 Unselected Attribute

Aquatic:
Shape 1.00 caudal fin shape 1.00 dorsal fin shape straight
Color 0.76 yellow 0.41 black pink
Texture 1.00 ridged 1.00 jelly-like joint texture
Size 1.00 asymmetric 1.00 pectoral fins oval
Context 1.00 aquatic 1.00 underwater cliffs
Features 1.00 rounded snout 1.00 diving ability ability to fly
Appearance 1.00 skeletal structure 1.00 lack of wheels oral surface
Behavior 0.61 disjointed – – flying
Environment 1.00 artificial reef 1.00 continental shelf cave
Material 1.00 bony 0.61 protein magnesium

Aerial:
Shape 1.00 equilateral 1.00 slanted elastic
Color 1.00 turquoise 0.67 maroon pink
Texture 1.00 turf 1.00 spotted marbled pattern
Size 0.17 tracks 0.17 smoke emitting tiny
Context 1.00 warning track 1.00 construction sites sky
Features 1.00 spires 1.00 theater kitchen
Appearance 1.00 presence of parking lots 1.00 circular base lanterns
Behavior 1.00 tournament 0.34 docking crawling
Environment 1.00 downtown 1.00 town arctic
Material 0.84 soil 0.17 gravel pvc

Game:
Shape 1.00 thin 1.00 fat oval
Color 1.00 gray 1.00 shadow hand
Texture 1.00 patterned 1.00 grooved lined
Size 1.00 small 1.00 medium width of phalanges
Context 1.00 torso 1.00 folds presence of artifacts
Features 1.00 stripes 1.00 lunate tentacles
Appearance 1.00 edges 1.00 contour presence of arthritis
Behavior 1.00 healed 1.00 extension contracture
Environment 1.00 dangerous 1.00 deteriorated –
Material 1.00 iron 1.00 opaque lamellae

Medical:
Shape 1.00 knobby 1.00 straight spiral
Color 1.00 contrast 1.00 shadow green
Texture 1.00 lined 1.00 fissured scaly
Size 1.00 proportionality 1.00 large volume
Context 1.00 wrist bones 1.00 adjacent bones wrinkles
Features 1.00 index middle phalanx 1.00 middle proximal phalanx paws
Appearance 1.00 presence of fractures 1.00 presence of bone deformities presence of wheels
Behavior 1.00 hypersupination 1.00 extension inflamed
Environment 1.00 sparse – – deteriorated
Material 1.00 hydroxyapatite 1.00 transparent ligament

Surgery:
Shape 1.00 pointed tips 1.00 microscopic wavy
Color 1.00 silver color 0.97 stainless steel pink
Texture 1.00 knurled 1.00 textured grip bumpy
Size – – – – narrow
Context 1.00 surgical bone mallet 1.00 surgical bone clips monitor screens
Features 1.00 tension adjustment 1.00 adjustable fiber optic
Appearance 1.00 sharp 1.00 shiny transparent
Behavior 1.00 stabilizing 1.00 twistable coagulating
Environment 1.00 surgical tools 0.99 mobile surgical unit non-sterile environment
Material 1.00 cutting edge 1.00 precise paper

Table G. Selected attributes with in-distribution (ID) scores in the five datasets. Attributes are grouped into 10 different types, and we show
top-2 selected attributes per each type with the highest ID scores, and 1 representative unselected attribute with zero ID score.
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