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Figure 1. The architecture of encoder and decoder.

A. Network Details

EdgeMovingNet employs an encoder-decoder backbone.
The architecture of encoder and decoder is shown in Fig. 1.
For an input point cloud of size N x 3, we stack four Edge-
Conv [10] blocks as encoder to transform 3D coordinates
into embeddings, which produces NV x 256-dimension vec-
tors as point-wise features capturing both local and global
information. Subsequently, these feature vectors are fed
into three distinct decoders: normal-decoder, direction-
decoder and distance-decoder. Each decoder consists of
four fully connected (FC) layers. The first three layers
incorporate batch normalization and ReLU activation, re-
sulting in output dimensions of 256, 128, and 64, respec-
tively. The final layer, equipped with batch normalization,
produces outputs of different dimensions: three for normal-
decoder which estimates normal n, three for direction-
decoder that estimates point-to-edge direction n., and one
for distance-decoder that estimates point-to-edge distance.
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B. Comparison Metrics

To quantitative compare our EdgeMovingNet with other
methods, we introduce Chamfer distance(CD), Hausdorff
distance(HD) and normal consistency(NC) as metrics for
measuring the approximation error between the reconstruc-
tion results and the ground truth model. We randomly sam-
ple dense point clouds Pp and Qp (both containing W =
100K points) from the ground truth model and the recon-
structed mesh surface. The Chamfer distance D, and Haus-
dorff distance Dy, between Pp and () p are defined as fol-
lows:
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where u; or v; is one point in Pp or () p, respectively. And
the normal consistency N, is formulated as:
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where ny,, and n., are unit normal vectors of u;’s and v;’s
sampled surface, v is the index of nearest point to u; in @ p
and w is the index of nearest point to v; in Pp.

C. Backbone Ablation

We also conduct ablation studies on different backbone
choice of EdgeMovingNet. We test three classic point cloud
feature learning backbones—PointNet++ [8], DGCNN [10]
and PointTransformer [13] as our network encoder. All of
them are able to predict accurate edge points and generate
similar edge-preserving results based on our pipeline. The
detailed evaluation on metrics is presented in Tab. 1. We se-
lected DGCNN as the final backbone for most of our experi-
ments because it is lightweight and powerful enough to pro-
duce good results for our reconstruction task. In the future,
with the advancement of more effective point cloud feature
encoders, our EdgeMovingNet can benefit more from them.

Table 1. Backbone ablation study of EdgeMovingNet. CD and
HD are multiplied by 107

Backbone ‘ CD) HDJ] NCt ‘Params. FLOPs
PointNet++[8] 0.744 1.488 0978 | 1.0M 7.2G
DGCNNJ[10] 0.703 1.368 0991 | 1.3M 4.8G
PointTransformer[13] | 0.702 1.352 0.990| 7.8M 5.6G

D. Hyperparameter Ablation

We offer the more detailed ablation on the choice of hy-
perparameters within our pipeline, including the distance
threshold of edgemask 4, radius of edge neighbors r, the
angle threshold # and the optimization refinement parame-
ter . This analysis is also performed on our dataset from
ABC[6]. The evaluation results for these ablations are sum-
marized in Tab. 2, where CD and HD values are scaled by a
factor of 102.

Table 2. Ablation on hyperparameters.

Edgemask§ | CD| HD| | Radiusr |CD| HD]
0.02 094 1.57 0.05 0.84 152
0.05 071  1.37 0.1 0.70 1.38
0.01 0.82 144 0.2 0.81 1.50

Angle 0 ‘ CDJ) HD| H Parameter p ‘ CD, HDJ]
5° 0.77 142 0.005 0.75 141
10° 0.70 1.37 0.01 0.71 138

15° 072 134 0.02 072 139

It can be found that these hyperparameters have slight
impacts on the final reconstruction metrics, with the edge
mask threshold ¢ and the neighbor radius r being more in-
fluential. Accordingly, we choose §=0.05, r=0.1, #=10° and
1=0.01 as our final hyperparameter settings, as detailed in
our paper. These parameters are applied across all our ex-
periments and have demonstrated strong robustness across
various datasets.

E. Running Time

It takes 3 days to train EdgeMovingNet on single NVIDIA-
2080Ti GPU using our dataset. Once trained, EdgeMov-
ingNet’s inference time for a single object is approximately
1.4s, and the refinement process takes about 3s on AMD
Ryzen 5 5600X CPU in Python implementation. This is
more convenient and efficient compared to methods that re-
quire training or learning priors for each object, such as PCP
[7]. Our method is capable of serving as a tool for high
quality point cloud reconstruction within limited resources
while preserving edges.

F. More Results

We offer more reconstruction results of common objects in
ModelNet [11] and ShapeNet [3] dataset. We make visual
comparisons against Poisson [5], Voronoi [1], POCO [2],
PCP [7], RFEPS [12], GeoUDF [9] and NKSR [4]. The
results are illustrated in Fig. 2. Poisson [5] and RFEPS [12]
require point normal as input, while other methods make
reconstruction with only points.
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Figure 2. More visual comparisons against other reconstruction methods, including Poisson [5], Voronoi [1], POCO [2], PCP [7], RFEPS
[12], GeoUDF [9] and NKSR [4]. Chair and bathtub are from ShapeNet [3] dataset. Desk, sofa and mug are from ModelNet [11] dataset.
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