
A. Appendix
To complement the main content of the paper, we provide
here additional details about the method in Sec. B as well
as additional quantitative and qualitative results in Sec C.

B. Additional technical details
B.1. Frequency Modulation details
Time-varying high-pass filter definition. In our method,
we rely on frequency domain and use a high pass filter to
steer the denoising process as described in equation (4). In
the following, we provide the formal definition of the time-
varying high pass filter, K(t), that we used.

The high-pass filters K(t) have time-varying cut-off fre-
quencies, defined as follows:

ρ(t) =
t

T
(8)

τh(t) = h · c · (1− ρ(t)) (9)
τw(t) = w · c · (1− ρ(t)) (10)

where τh(t) and τw(t) are the horizontal and vertical cut-
off frequencies at timestep t, respectively. Subsequently,
the mask K(t), which is applied on the shifted frequency
spectrum centered on (xc, yc), is defined as

K(t) =


ρ(t), if |x− xc| < τw(t)

2

& |y − yc| < τh(t)
2 ,

1, otherwise
(11)

The cut-off frequency grows as the denoising process
progresses, while the scaling factor of the low-frequency
coefficients decreases. Our frequency modulation is de-
signed such that the guidance from the denoised latent z̃t
becomes more significant as t → 0. In our experiments, we
set c = 0.5.

Derivation of the Frequency Modulation in time-
domain. In the main paper, we mention that our fre-
quency modulation introduced in Eq. (4) can be reformu-
lated in time domain as Eq. (5) and discuss the correspond-
ing benefits. Here, we provide a formal derivation to sup-
port the equivalence between the two formulations. For ease
of presentation, we omit the timestep t and resolution m no-
tations from operands.

Let z ∈ Rh×w be the 2D latent, and Z = DFT2D (z) ∈
Ch×w be the Fourier transform of z. Written in matrix form,

Z = (WrzWc), (12)

where Wr ∈ Ch×h,Wc ∈ Cw×w are the row- and column-
wise Fourier transform matrices, respectively. Let K ∈
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Figure 8. Comparison of Attention Swapping and Modulation

Rh×w be the high-pass filter defined in the previous section,
our proposed mixing operation in the frequency domain is
formulated as below:

Ẑ = K ⊙DFT2D(z) + (1−K)⊙DFT2D(z̃)

= K ⊙ (WrzWc) + (1−K)⊙ (Wrz̃Wc)

= WrzWc + (1−K)⊙ (Wr(z̃− z)Wc)

The inverse DFT of Ẑ, which is the outcome of Eq. 4, is
formulated as:

ẑ = IDFT2D(Ẑ)

= W−1
r (WrzWc + (1−K)⊙ (Wr(z̃− z)Wc))W

−1
c

= W−1
r WrzWcW

−1
c

+W−1
r ((1−K)⊙ (Wr(z̃− z)Wc))W

−1
c

= z+
(
W−1

r (1−K)W−1
c

)
⊛

(
W−1

r Wr(z̃− z)WcW
−1
c

)
= z+ k ⊛ (z̃− z),

resulting in Eq. 5 in the main paper, where k = W−1
r (1 −

K)W−1
c = IDFT2D(1−K) is a convolutional kernel and

⊛ denotes a circular convolution operator.

B.2. Attention Modulation details
In our method, Attention Modulation can be in practice im-
plemented as:

z′ = (λ · U(Mn, s) + (1− λ) ·Mm) · Vm

= λ · Att(U(Qn, s),U(Kn, s), Vm)

+ (1− λ) · Att(Qm,Km, Vm)



U denotes an s-times upsampling function. Both attention
operations can utilize Flash Attention. We also note that
Flash Attention is available as a Triton kernel, hence a cus-
tom kernel supporting AM could be implemented by scaling
the raw block-wise scores directly.

B.3. Attention Modulation analysis
As mentioned in Sec. 3.3, we take inspiration from recent
literature using attention swapping to control local texture.
However, rather than swapping attention, we mix the two
attention paths instead. In Figure 8 we compare attention
swapping versus our proposed attention modulation. These
results clearly show the benefit of including the attention
from the high resolution path rather than directly swapping
with the low res pass to avoid loss of information from the
high res denoising path. We empirically set λ used in Eq (6)
to 0.7.

C. Additional experimental results
C.1. Quantitative results for FM and AM
In Table 2 shows an ablation of the FAM Diffusion compo-
nents, showing that: (1) Each component provides large im-
provements over the baseline (especially on the more mean-
ingful FIDc and KIDc metrics), (2) FM and AM individual
gains accumulate when used in combination.

C.2. FAM diffusion with different SD backbones
In Table 1 we show that our method outperforms sev-
eral baselines when combined with SDXL. In addition to
those main results, we further combine our FAM diffusion
method with various SD backbones. The quantitative re-
sults in Table 3 demonstrate that our approach can seamless
combine with different variants of SD and provides simi-
larly large improvements in quality and image-text align-
ment across all experimental settings.

C.3. FAM diffusion with different aspect ratios
Thus far, we have used our method to generate high-
resolution images by equally upscaling both the height and
width. Here, we study the effect of using Fam diffusion
targeting different aspect ratios. In particular, starting from
the SDXL model, we use our approach targeting higher res-
olutions with different aspect ratios. The quantitative re-
sults in Table 4 and qualitative results shown in Figures 9
through 11, clearly highlight the versatility of our method

Method FID↓ KID↓ FIDc ↓ KIDc ↓ CLIP ↑
SDXL 59.5 0.0067 50.5 0.0136 30.6
FM 59.4 0.0079 38.9 0.0112 31.1
AM 59.9 0.0075 41.3 0.0102 30.9
FAM 58.9 0.0072 34.0 0.0080 32.3

Table 2. Ablation of FAM components at 2K resolution.

that can seamlessly adapt to various settings without com-
promising quality.

C.4. FAM diffusion with different conditioning
terms

Fam Diffusion enables seamless integration with various
LDM-based applications, such as ControlNet [33]. As
shown in Figure 12, Fam Diffusion combined with Control-
Net [33] achieves controllable high-resolution generation,
with examples showcasing the use of images and canny
edges as conditions.



Method Resolution Scale Factor FIDr ↓ KIDr ↓ FIDc ↓ KIDc ↓ CLIP Score ↑
SD 1.5

2× 2

75.36 0.0122 43.99 0.0103 30.35
SD 1.5 + FAM diffusion 65.07 0.0087 34.06 0.0082 30.92
SD 2.1 86.62 0.0163 53.67 0.0137 29.66
SD 2.1 + FAM diffusion 64.77 0.0084 38.18 0.0091 31.13
SDXL 59.47 0.0067 50.54 0.0136 30.6
SDXL+ FAM diffusion 58.91 0.0072 33.96 0.0080 32.35
SD 1.5

3× 3

106.50 0.0251 48.92 0.0133 28.89
SD 1.5 + FAM diffusion 38.19 0.0011 43.99 0.0082 30.44
SD 2.1 137.05 0.0384 63.91 0.01719 27.81
SD 2.1 + FAM diffusion 64.8 0.0089 40.49 0.0114 31.13
SDXL 78.41 0.0136 69.40 0.0210 28.44
SDXL + FAM diffusion 69.25 0.0007 36.40 0.0100 32.25
SD 1.5

4× 4

150.84 0.0474 55.97 0.0155 27.40
SD 1.5 + FAM diffusion 67.77 0.0086 40.21 0.0012 30.36
SD 2.1 177.06 0.0645 69.43 0.019 26.36
SD 2.1+ FAM diffusion 66.32 0.0085 41.37 0.0018 31.10
SDXL 160.10 0.0602 74.37 0.0242 26.70
SDXL + FAM diffusion 58.91 0.0073 43.65 0.0130 32.33

Table 3. Comparison of vanilla Stable Diffusion and our FAM diffusion.

Method Scaling Factor FID↓ KID↓ FIDc ↓ KIDc ↓ CLIP ↑
DemoFusion [3]

2× 4

81.69 0.0112 54.48 0.0165 29.3
AccDiffusion [15] 70.42 0.0119 55.73 0.0205 29.0
FouriScale* [12] 71.86 0.0302 63.28 0.0322 25.8
HiDiffusion [34] 118.56 0.038 65.46 0.021 26.3
SDXL [19] 80.62 0.0236 67.46 0.0302 25.5
SDXL [19] + FAM diffusion 63.48 0.0090 41.44 0.0115 30.6

Table 4. System-level comparisons with SDXL. * indicates inference with FreeU [26]



nature in the reflection of a mirror which is 
located in the middle of the caos, realistic, 
well done, detailed, 8k
 

A micro-tiny clay pot full of dirt with a beautiful daisie 
planted in it, shining in the autumn sun on a road in an 
abandoned city, fiction, wallpaper, character, cg artwork, 
art, flash photography

(a) Native Resolution Image

2048x4096 4096x2048

(b) DemoFusion

2048x4096 4096x2048

(c) FouriScale*

Figure 9. Qualitative comparison with other methods based on SDXL. Best viewed when zoomed in. * indicates inference with FreeU [26].
(Continued in Fig. 10).



2048x4096 4096x2048

(a) HiDiffusion

2048x4096 4096x2048

(b) Our Method

Figure 10. Qualitative comparison with other methods based on SDXL (continued from Fig. 9). Best viewed when zoomed in.
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(a) FouriScale*
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(b) HiDiffusion

2304x1664

1664x2304

(c) Our Method

Figure 11. Qualitative comparison with other methods based on SDXL with arbitrary resolutions. DemoFusion is unable to handle arbitrary
resolutions, therefore not included. Best viewed when zoomed in.



Condition Prompt: A dog, 4k Prompt: A rabbit, 4k Prompt: A Fox, 4k
(a) Image to Image

Condition​
Prompt: Corgi is running on 
the grass​

Prompt: Corgi is running on 
the water​

Prompt: Corgi is running on 
the snow​

(b) Canny Edges to Image

Figure 12. Results of FAM Diffusion combining with ControlNet [33]. All images are generated at 2× (2048 × 2048).Best viewed when
zoomed in.
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