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Supplementary Material

A. Model Scaling Effect
We investigate the effect of scaling model size by trying
three model sizes for the Fusion Transformer: ViT-base,
ViT-large, and ViT-huge, according to the settings in the
original ViT paper [10]. The results are shown in Figure 9.
This experiment demonstrates that larger model size contin-
ually benefits 3D tasks including camera pose estimations
and 3D reconstruction. Note that the Fusion Transformer
size used in the main text for all experiments is a ViT-base.

B. Data Scaling Effect
We study the effect of scaling the data using 4 different
scales of data, 12.5%, 25%, 50%, and 100%, to train the
model. The results are shown in Figure 10. The training
settings for all models are kept the same except for how
much data they have access to. The results demonstrate
that Fast3R continually benefits from more data, suggest-
ing Fast3R could achieve better results in the future given
more data.

C. Gaussian Splatting
We qualitatively demonstrate the potential of using Fast3R’s
output for downstream novel view synthesis tasks. A visu-
alization of the Gaussian Splatting generated by adopting
the pipeline of InstantSplat [15] is shown in Figure 11.

D. Bundle Adjustment (via Gaussian Splat-
ting)

While not necessary, using bundle adjustment at inference
time can also improve Fast3R’s performance. We show
an example of bundle adjustment using Gaussian Splatting
(GS-BA).

Specifically, we use InstantSplat [15] to optimize a set
of Gaussians per scene, using initializations from a point
cloud, and update the locations and poses in order to mini-
mize reprojection error. We show an example of the Gaus-
sian reconstruction in Figure 11 shows an example recon-
struction on CO3D.

We can compare against ground-truth trajectories from
COLMAP. We found that GS-BA significantly reduces both
the pose and translation error. Table 6 quantifies this, show-
ing over a 2.5x reduction in translation error and a 4x reduc-
tion in rotational error on the “Family” scene from Tanks
and Temples, which we found to be representative. We
show a visualization of the original reconstruction and the
poses pre- and post-bundle-adjustment. There are only 8
scenes in the evaluation set in InstantSplat.

Method RPE Rotation (#) RPE Translation (#)

Fast3R 27.9 7.64
Fast3R w/ GS-BA 11.0 1.80

Table 6. Pose estimation can further improve with Bundle Ad-
justment. We show an example on the ”Family” scene from Tanks
and Temples, using InstantSplat [15].

Methods ScanNet ETH3D DTU T&T
rel # ⌧ " rel # ⌧ " rel # ⌧ " rel # ⌧ "

COLMAP-DENSE 38.0 22.5 89.8 23.2 20.8 69.3 25.7 76.4
DUSt3R 224 5.86 50.84 4.71 61.74 2.76 77.32 5.54 56.38
DUSt3R 512 4.93 60.20 2.91 76.91 3.52 69.33 3.17 76.68
Fast3R 6.27 50.27 4.68 62.68 3.92 62.60 4.43 63.95

Table 7. Multi-view depth evaluation. DUSt3R and Fast3R
perform on par, while significantly outperforming COLMAP-
DENSE.

E. Multi-view Depth Evaluation
We compare Fast3R (using the local pointmap prediction)
with DUSt3R and COLMAP on multi-view depth estima-
tion tasks and show results in Table 7.

F. More Visualizations
We show more visualizations of Fast3R’s performance on
indoor scenes in Figure 15. Fast3R learns the regularity of
indoor rooms (square-like shapes) and demonstrates “loop
closure” capabilities.

F.1. 4D Reconstruction: Qualitative Results
Because Fast3R can handle multiple frames naturally, one
may wonder how well Fast3R can handle dynamic scenes.
We qualitatively test Fast3R’s 4D reconstruction ability,
showing examples of dynamic aligned pointmaps at multi-
ple time steps in Figure 16. Fast3R can be trained to achieve
such results by finetuning a 16 static views checkpoint on
the PointOdyssey [73] and TartanAir [61] datasets, consist-
ing of 110 dynamic and 150 static scenes, respectively. We
freeze the ViT encoder, use 224x224 image resolution, and
swap in a newly-initialized global DPT head. We fine-tune
the model with 15 epochs with a frame length of 16, batch
size per GPU of 1, and use the same learning rate sched-
ule as Fast3R. The process takes 45 hours to finetune on 2
Nvidia Quadro RTX A6000 GPUs.

We see that our approach produces qualitatively reason-
able reconstructions with minimal changes. MonST3R [69]
is a concurrent work also tackling dynamic scene recon-



Figure 9. Model scaling effect. Increasing the size of the Fusion Transformer leads to better camera pose estimation (") and 3D recon-
struction (#). All models are trained for 60k steps (equivalent to 60 epochs; the main paper uses 100 epochs).

Figure 10. Data scaling effect. More training data leads to better camera pose estimation (") and 3D reconstruction (#). All models are
trained for 60k steps (equivalent to 60 epochs; the main paper uses 100 epochs).

Figure 11. Visualization of Gaussians from unseen poses. The frames are ordered temporally along the direction of the arrows. The
middle frames show poses very different from those used for reconstruction, as is evidenced by the large areas with no Gausisans. The
scene is fit from 7 images from CO3D.

struction that builds atop DUSt3R. However, like DUSt3R,
it assumes a pairwise architecture and also uses a separate
model to predict optical flow. We show that the same Fast3R
architecture trained end-to-end with the same many-view
pointmap regression (just swapping the data to dynamic
scenes), can also work for 4D reconstruction. Importantly,
our method remains significantly faster, opening the poten-

tial for real-time applications.



Figure 12. Bundle adjustment further improves pose. Left: reconstruction from Fast3R. Middle: Original poses pre-GS-BA. Right:
Poses after GS-BA.

Spann3R Fast3R

Figure 13. Large-scale reconstruction: Spann3R vs. Fast3R on the Lighthouse scene from Tanks & Temples dataset.



Reconstruction using Global Point Map Reconstruction using Local (aligned to Global) Point Map

Figure 14. Effect of using local vs. global pointmap. Global point maps provide good anchors for locations of points while local point
maps use those anchors (by aligning using ICP on the anchor points to the global point map) to provide more accurate point locations. Best
viewed when zoomed in.

Figure 15. Visualizations of results on NRGBD scenes. Fast3R learns the regularity of indoor rooms (square-like shapes) and demon-
strates loop closure capabilities.



First Frame Middle Frame Last Frame

Figure 16. Qualitative 4D reconstruction early results on dynamic scenes in PointOdyssey [73]. Results are obtained with one forward
pass. The tracks are visualized using ground-truth track annotations.


	Introduction
	Related Work
	Model
	Problem definition
	Training Objective
	Model architecture
	Memory-Efficient Implementation

	Experiments
	Inference Efficiency
	Camera Pose Estimation
	3D Reconstruction

	Ablation Studies
	Scaling the number of views
	Model scaling and data scaling
	Training without position interpolation
	Inference without local head

	Conclusion
	Acknowledgment
	Model Scaling Effect
	Data Scaling Effect
	Gaussian Splatting
	Bundle Adjustment (via Gaussian Splatting)
	Multi-view Depth Evaluation
	More Visualizations
	4D Reconstruction: Qualitative Results


