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Supplementary Material

In this supplementary document, we first describe the
training data preparation process, including the generation
of masked data and its use in both the in-the-wild and
3DMM domains (Appendix A). Then, we present ablation
studies on network structures to analyze their impact on the
3DMM UV structure and realism (Appendix B). Finally,
we provide additional qualitative comparisons with exist-
ing methods, showcasing the superior performance of our
approach (Appendix D).

A. Training Data Preparation
Our training data preparation process is illustrated in
Fig. S.1. Given a face image I, we first derive the skin re-
gion mask Mw

I using a face segmentation algorithm [9].
Additionally, we extract another skin region mask Mm

I

from the reconstructed 3DMM skin area. These two
masks are combined via element-wise multiplication to pro-
duce the final mask MI , which represents the overlapping
skin regions shared by both the in-the-wild image and the
3DMM-generated image. Applying this combined mask
to the original image I yields the masked in-the-wild im-
age Iw. For both in-the-wild and 3DMM data, we uti-
lize masked data to ensure consistency during the inference
stage integration.

For 3D face reconstruction, we employ the FLAME
3DMM model [6]. We directly utilize the reconstruction
method proposed in [7, 8] without additional training. The
method in [7, 8] is a re-trained version of the Deep3Dface
method [2], specifically adapted for the FLAME model.
The reconstructed 3DMM result is denoted as Îm. Subse-
quently, we isolate the skin region from the UV texture by
cropping and enlarging it, producing T̂m. Using the recon-
structed 3DMM shape, we sample pixels from the masked
image Iw and unwrap them into UV space, resulting in the
unwrapped UV texture Tw. Similarly, the combined mask
MI is unwrapped to generate the UV mask MT . By apply-
ing the UV mask to the UV texture and UV position map
from the 3DMM, we obtain the masked UV texture Tm

and the UV position map Tuv , respectively. These masked
outputs are then reprojected into 2D space, resulting in the
2D images Im and Iuv .

This pipeline, starting from a single input image I, pro-
duces a dataset suitable for training. However, it is notable
that generating a complete and realistic UV texture is chal-
lenging. The accuracy of the unwrapped UV texture Tw

is highly dependent on the performance of 3D face recon-
struction. Flaws such as inaccuracies in 3DMM fitting and

self-occlusion often result in distorted textures with missing
regions.

Examples of the final in-the-wild images selected for
training are shown in Fig. S.2. Images with failed face seg-
mentation—such as those containing residual artifacts from
hands or other objects—were manually excluded, as they do
not accurately correspond to the skin region of the human
face. During the inference stage, images with failed seg-
mentation used as input can degrade the quality of the final
output, as shown in Fig. S.3. To address this issue, we plan
to leverage more advanced face segmentation techniques in
the future to ensure robust performance in such cases. Nev-
ertheless, our method is still capable of partially alleviating
the impact of occlusions.

B. Additional Networks on Ablation Studies

Since both appearance network ϕa and structure network ϕs

can independently generate UV texture, we evaluated their
outputs to assess their ability to preserve the structure and
realism of the 3DMM UV map. The results are shown in
the 4th and 5th columns of Fig. S.4. Their inputs are the
same as those of inference network ϕi, i.e., the unwrapped
UV texture Tw and the complete UV position map Υw.
Neither of ϕa and ϕs is capable of preserving the structure
of the 3DMM UV map. Structure network ϕs, trained on the
3DMM data domain, , fails to maintain consistency with the
input UV map and introduces distortions.

We also observed that structural degradation still occurs
when the structure network ϕs is trained using a UV-to-2D
input-output configuration (see the 6th column of Fig. S.4),
even though this setup aligns with the consistent pattern of
the 3DMM data domain.

In contrast, FreeUV adopts a UV-to-UV Cross-
Assembly Inference strategy, ensuring consistent alignment
and structural integrity within the UV space. This strategy
effectively allows the appearance network ϕa and the struc-
ture network ϕs to complement each other’s strengths.

C. Comparison with DSD-GAN

To the best of our knowledge, DSD-GAN [3] is the first
and only method to achieve complete UV texture comple-
tion without relying on ground truth UV data. It employs
a dual-space discriminator GAN, applying two discrimina-
tors in both UV map space and image space to learn facial
structures and texture details. Under the same UV ground-
truth-free setting, our key contribution lies in improving
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Figure S.1. Training Data Preparation Process. From a single image I, this process produces a dataset suitable for training.
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Figure S.2. Examples of Final In-the-Wild Images Selected for
Training. Images with segmentation failures—such as those con-
taining residual artifacts from hands or other objects—were ex-
cluded to ensure data quality.
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Figure S.3. Impact of Segmentation Failures on Inference Re-
sults. Failed segmentation in input images can degrade output
quality. Advanced face segmentation techniques will be helpful
in addressing this issue.

structural consistency and texture fidelity. Furthermore, our
method leverages a pre-trained diffusion model, enhanc-
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Figure S.4. Ablation Studies on Network Structures. Results
using only the appearance network ϕa, only the shape network ϕs,
and FreeUV with different configurations highlight the challenges
in preserving the structure of the 3DMM UV map and maintaining
realism.
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Figure S.5. Comparison with DSD-GAN. Our method shows im-
proved structural alignment and texture fidelity.

ing robustness to out-of-domain scenarios. As shown in
Fig. S.5, DSD-GAN exhibits misalignment artifacts, partic-
ularly in the nasal and lip regions, as observed in their paper
(since the official code is not publicly available).

D. Additional Results
We present additional results in Figs. S.6, S.7, and S.8.
Compared to HRN [4], FFHQ-UV [1], and UV-IDM [5],
our method excels in capturing fine details, achieving realis-
tic outputs, and demonstrating enhanced robustness, partic-
ularly in preserving features such as beards, wrinkles, spec-
ular highlights, and makeup.
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Figure S.6. Comparison of Results. Our method outperforms HRN [4], FFHQ-UV [1], and UV-IDM [5] in capturing fine details,
achieving realism, and maintaining robustness.
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Figure S.7. Comparison of Results. Our method outperforms HRN [4], FFHQ-UV [1], and UV-IDM [5] in capturing fine details,
achieving realism, and maintaining robustness.
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Figure S.8. Comparison of Results. Our method outperforms HRN [4], FFHQ-UV [1], and UV-IDM [5] in capturing fine details,
achieving realism, and maintaining robustness.
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