
Gain from Neighbors: Boosting Model Robustness in the Wild via Adversarial
Perturbations Toward Neighboring Classes

Supplementary Material

A. Sample Number vs. Similarity Rank k

Here, we provide a more detailed explanation of some of
the results presented in Sec. 3.1.

A.1. Similarity Rank k

First, we followed common practices to define class em-
beddings as the vectors corresponding to the weight ma-
trix of the final fully connected layer in the classification
model. Assuming the [CLS] token in ViT has a dimen-
sion of R1×768 and ImageNet-1K contains 1000 classes,
the weight matrix of the head layer, i.e., the fully connected
layer, is W ∈ R768×1000. Then, the class embedding for the
c-th class is defined as zc = W [:, c]. And the similarity ma-
trixM = WTW ∈ R1000×1000, whereMij = zi ·zj . Be-
low is the pseudocode for calculating the similarity rank k
between the mispredicted class p and the ground truth class
c:

Algorithm 1 Compute Similarity Rank k Between Predic-
tion p and Ground Truth c.

Input: Class embeddings {zi}Ci=1 ∈ Rd, ground truth
class c, predicted class p.

Output: Similarity rank k of prediction p with respect to
ground truth c.

1: %Step 1: Compute similarity matrix
M.

2: for i ∈ {1, . . . , C} do
3: for j ∈ {1, . . . , C} do
4: Mij ← zi · zT

j

5: end for
6: end for
7: %Step 2: Extract similarities for
ground truth class c.

8: m←M[c, :]← {Mc1,Mc2, . . . ,McC}
9: %Step 3: Sort similarities in
descending order.

10: msorted ← Sort(m, descending)
11: %Step 4: Find rank k for prediction

p.
12: k ← Index(Mcp,msorted)
13: return k ∈ {1, . . . , C}

Similarity Matrix M: The similarity between classes
is computed as the dot product of their embeddings.

Extract Similarities for Class c: The similarity values
for the ground truth class c are retrieved.

Rank Computation: The similarities are sorted in de-
scending order, and the similarity rank of the mispredicted
class p is determined.

This pseudocode outlines the key steps for computing the
similarity rank k.

A.2. Histogram of Rank k

Next, we analyze the relationship between k and the number
of samples in wrong set S described in Sec. 3.1. We com-
pute each sample’s similarity rank and obtain a frequency
distribution histogram. The pseudocode for this process is
shown below.

Algorithm 2 Compute Frequency Distribution of Similarity
Rank k

Input: Wrong set S = {xi, pi, yi}Ni=1, where ground truth
labels {yi} and predicted incorrect labels {pi}.

Output: Frequency distribution histogram of similarity
rank k.

1: Initialize histogram Hk ← 0 for all ranks k ∈
{1, . . . , C}.

2: Compute similarity matrixM as in Algorithm 1
3: for each sample (xi, pi, yi) in S do
4: Extract similarities for label yi: m←M[yi, :]
5: Obtain the sorted similarities: msorted
6: Compute similarity rank k of predicted class pi as in

Algorithm 1: k ← Index(Myi,pi
,msorted)

7: Increment histogram: Hk ← Hk + 1
8: end for
9: return Histogram Hk

We conducted this process across all 19 types of
degradations in ImageNet-C, including Noise (gaus-
sian noise, shot noise, impulse noise), Blur (defocus blur,
glass blur, motion blur, zoom blur), Weather (snow, frost,
fog, brightness), Digital (contrast, elastic transform, pixe-
late, jpeg compression), and Others (speckle noise, gaus-
sian blur, spatter, saturate), and the resulting distribution
plots are shown in Fig. 7. Observing these plots, we can
conclude that misclassifications caused by image degrada-
tions are often concentrated in categories with high similar-
ity to the ground truth labels.

B. Pixel Intensity Under Various Degradation
We also investigated the impact of degradations (distribu-
tion shift) on pixel intensity as described in Sec. 3.1. Here,



we provide additional and more detailed visualization re-
sults. Specifically, we randomly selected five images and
applied three randomly chosen types of degradation from
the 19 available in ImageNet-C, each with severity levels
ranging from 1 to 5. The resulting changes in pixel in-
tensity distributions are illustrated in Fig. 8. From these
images, it can be observed that the degradations primarily
affect the overall intensity of the pixel values without signif-
icantly altering the underlying structure of the images. The
underlying structure represents the essential features of ob-
jects within the image. The model’s outputs could become
unpredictable if the structure undergoes significant changes.
In contrast, the subtle overall distributional shifts observed
here (as illustrated in Fig. 8) often lead the model to predict
semantically similar neighboring classes, further corrobo-
rating our previous conclusions.

C. The Difference Between Our Method and
Standard Adversarial Training

In Sec. 3.2, we introduced a method for computing the clas-
sification loss of neighboring classes on input data and ap-
plying perturbations based on the corresponding gradients,
which can be written as Eq. (5):

x′ = x− η ∗ sign(∇xLce(θ,x, yp)). (5)

The standard adversarial training described in Sec. 2.1
in Eq. (3) is also included here for ease of comparison:

x′ = x+ η ∗ sign(∇xLce(θ,x, y)). (3)

Class GT

Adversarial 
Sample

Push away
Arbitrary

(a) Standard adversarial training (b) Our neighboring perturbation

Neighboring
Class

Class GT

Adversarial 
Sample

Figure 6. The difference between our method and standard adver-
sarial training.

The fundamental difference between the two approaches
lies in the target class used to compute the adversarial per-
turbations. Based on the direction and meaning of the gra-
dients, our method in Eq. (5) perturbs the input towards
neighboring class yp, aiming to mimic the subtle ambigu-
ities between visually or semantically related classes and
performs adversarial training to distinguish them, thereby
enhancing the model’s robustness clearly. In contrast, stan-
dard adversarial training in Eq. (3) perturbs the input away

from the ground-truth class y, aiming to defend against ex-
treme misclassifications caused by large deviations under
adversarial conditions. In other words, standard adversar-
ial training is tailored to counter adversarial attacks, while
our method is more suited for handling degraded images
encountered in the wild.

Additionally, from an optimization perspective, the dif-
ference between the two methods can be visualized in Figs.
1(a) and 1(b), which are simplified into the schematic illus-
tration left Fig. 6.

As shown in this figure, in standard adversarial training,
the optimization process tends to be more challenging be-
cause the adversarial perturbations push the input samples
towards regions far from the decision boundary, often into
highly non-linear areas of the loss landscape. This results in
increased complexity for the model to effectively minimize
the adversarial loss.

In contrast, we focus on perturbing the input towards
neighboring classes, which are closer to the decision bound-
ary and semantically similar. This approach creates a
smoother and more constrained optimization landscape, re-
ducing the convergence difficulty while effectively improv-
ing the model’s robustness against real-world degradations.

Moreover, we present the detailed implementation of our
perturbation and training method in Algorithm 3. Where for
details about m andM, please refer to Algorithm 1.

Algorithm 3 Gradient Perturbation Adversarial Training

Input: Training data {x, y}, learning rate lr, class simi-
larity matrixM, model f with parameters θ, similarity
rank threshold k, step size η of adversarial perturbation.

Output: Updated model parameters θ∗

1: x.requires grad = True
2: for each minibatch {xB , yB} in training data do
3: for each sample {xi, yi} in the minibatch do
4: % Step 1: Obtain the class p.
5: m← {Myi1, . . . ,MyiC} ←M[yi, :]
6: value, index←m.topk(k)
7: p← index[random.randint(0, k − 1)]
8: % Step 2: Generate adversarial

samples.
9: for every step in total perturbation steps do

10: x′
i ← xi − η ∗ sign(∇xi

Lce(θ,xi, yp))
11: xi ← x′

i

12: end for
13: end for
14: % Step 3: Perform adversarial

training.
15: L ← 1

B

∑B
i=1 Lce(f(θ,x

′
i), yi)

16: θ∗ ← θ − lr · ∇θL
17: end for
18: return Updated model parameters θ∗.



Figure 7. The histogram of sample numbers vs. similarity rank k of incorrect prediction p and ground-truth label c.



(a) Clean Image (b) Pixel Intensity

Figure 8. The pixel intensity distribution changes of clean images and their degraded versions.

Method Average
Noise Blur Weather Digital Others

Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Speckle Noise Gaussian Blur Spatter Saturate

ViT-Base 59.20 59.27 56.39 58.44 51.20 45.29 58.39 46.01 43.09 44.78 69.55 73.06 71.41 58.22 67.27 66.67 63.91 54.06 66.68 71.06

FAN-B-H 65.75 67.70 67.18 67.98 57.95 47.20 62.58 56.11 64.79 63.34 69.76 78.86 70.69 60.07 62.10 69.29 71.23 60.82 73.64 77.99

TAPADL(FAN) 66.71 67.83 68.94 68.73 57.69 48.19 65.34 57.73 65.71 64.87 70.92 79.25 71.52 60.48 65.71 70.26 71.76 60.13 74.25 78.10
Ours(ViT-B) 67.56 64.79 63.05 63.55 63.21 56.21 67.39 58.31 61.75 61.51 74.49 79.78 73.50 64.17 74.53 72.17 70.61 65.27 72.19 77.19

Table 6. Detailed top-1 accuracy performance on 19 types of degraded images in ImageNet-C.



D. Additional Experimental Results
Here, we present the accuracy results of our method com-
pared to state-of-the-art approaches on 19 types of degra-
dations in ImageNet-C, as listed in Tab. 6. As shown in
the table, the results demonstrate that our method consis-
tently outperforms state-of-the-art approaches across vari-
ous degradations, highlighting its effectiveness in improv-
ing robustness. Notably, our method does not introduce
any additional parameters. The superior performance of
TAPADL [14] on noisy images can be attributed to its incor-
poration of additional convolutional layers for smoothing.
In contrast, our approach significantly enhances the perfor-
mance of ViT-Base without adding any extra parameters,
achieving an improvement, for instance, from 59% to 67%.
Similarly, our method also reduces the mCE (mean Corrup-
tion Error, where lower is better) of FAN from 46% to 39%,
as shown in Tab. 1 of the main text. This demonstrates the
effectiveness and versatility of our approach across different
architectures.


	. Introduction
	. Related Work
	. Robust Learning
	. Real World Recognition

	. Method
	. Motivations
	. Learning from Misclassified Neighboring Data
	. Inter-Class Distance Weighted Loss
	. Overall Framework and Training Process


	. Experiments
	. Datasets and Implementation Details
	. Robust Classification
	. Object Detection in the Wild

	. Ablation Studies and Analysis
	. Effectiveness of Each Component
	. Hyperparameter k and 
	. Analysis of Faster Convergence

	. Conclusions
	. Acknowledgment
	. Sample Number vs. Similarity Rank k
	. Similarity Rank k
	. Histogram of Rank k

	. Pixel Intensity Under Various Degradation
	. The Difference Between Our Method and Standard Adversarial Training
	. Additional Experimental Results



