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Table S1. Additional ablation study of LAYERDECOMP on held-
out test set based on random re-composition.

Model FID # CLIP-FID #

V0:RGB-only - -
V1:V0+RGBA FG (obj.) 45.758 3.756
V2:V0+RGBA FG (obj.+v.e.) 45.123 3.739

Ours:V2 + Lconsist 44.260 3.173

1. Additional Results for the Ablation Study

Test Set Details. The test set is a held-out subset of our
camera-captured data consisting of 635 image pairs (com-
posite image and background image). To construct this
dataset, we manually collected real-world examples com-
prising photos of scenes captured before and after the re-
moval of an object, while ensuring all other elements in the
scene remain unchanged. We also manually labeled the bi-
nary object mask for the removal target. As illustrated in
Fig. S2, the dataset encompasses both indoor and outdoor
scenarios, effectively reflecting real-world phenomena such
as shadows and reflections. This test set allows us to eval-
uate not only the quality of the decomposed background
naturally but also the quality of the foreground. By re-
compositing the background and foreground layer output,
we can effectively assess the fidelity and visual coherence
of the foreground, including the visual effect components.

Qualitative Comparison. To more intuitively demon-
strate the effectiveness of our design in LAYERDECOMP,
in addition to the quantitative analysis represented in Table
1 of the main paper, we provide more visual results of the
four model variants in Fig. S3. For each variant, we present
the decomposed background and foreground layers, along
with the re-composited image obtained by alpha blending
the two layers. For the RGB-only model (V0), which lacks
an RGBA foreground, we show only the decomposed back-
ground for reference. From the visual comparison among
V1, V2, and “Ours”, it is evident that our method, which
leverages consistency loss to explicitly model visual effects
in the foreground layer, produces: (i) background layers
with cleaner removal and less artifacts, (ii) foreground lay-
ers with more accurate extraction of transparent visual ef-
fects, resulting in re-composited results that are more plau-
sible and realistic.

Quantitative Comparison. To more comprehensively
evaluate the quality of the decomposed foreground, we ran-
domly move/resize the foreground prediction and then re-
composite it onto the decomposed background to evaluate

Table S2. Comparison of LAYERDECOMP with instruction-driven
object removal methods on Emu-Edit Remove Set [6].

Model FID # CLIP-FID #

Emu-Edit [6] 47.555 6.711
OmniGen [8] 48.116 6.283
Ours 38.998 5.622

the fidelity of the resulting image. Specifically, there are
three parameters to randomly adjust: X , Y , and S.
X 2 [−0.3,+0.3] and Y 2 [−0.3,+0.3] specify the
horizontal and vertical location changes as proportions of
the input dimensions, while S 2 [0.5, 1.5] specifies a
scaling ratio w.r.t. the original size. For each image, we
randomly select three parameters and apply the same ad-
justment to all model variants’ foreground prediction. The
FID and CLIP-FID of the randomly re-composite images
are reported in Table S1. Comparing with other model
variants, leveraging consistency loss to explicitly model vi-
sual effects in the foreground layer indeed improves re-
composition quality.

2. Additional Results for the Mask-Based Ob-

ject Removal Experiment

Benchmarks Details. Here, we provide more details for the
mask-based object removal benchmarks used to calculate
the metrics presented in Table 2 of the main paper.

• RORD [5]: We randomly select 1,029 images from the
original test set to reduce data redundancy caused by sam-
pling from the same video. The dataset provides both
manually labeled loose masks and tight masks for the
real-world object removal task. The average area of the
loose mask is 3.70 times that of the tight mask in each
image. As shown in Fig. S4, RORD includes diverse in-
door and outdoor scenes, featuring removal of various tar-
get objects with soft shadows or reflections in real-world
settings.

• MULAN [7]: We randomly select 1,000 images from
MULAN-COCO for our evaluation. For each image, the
dataset provides multiple object layers in RGBA format,
and we select the object in the top most layer as the re-
moval target. To reduce hallucination problems in tradi-
tional inpainting methods caused by tight object mask, we
further dilate the object mask by 10 pixels. As shown in
Fig. S5, MULAN data also includes diverse indoor and
outdoor scenes, featuring object removal in more clut-
tered settings.
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Figure S2. Examples of the real-world camera-captured image pairs used in our model training and ablation study. Images are captured by
a camera in real-world scenes. The masks are manually annotated, indicating the target objects to remove.

• DESOBAv2 [3]: There are 750 images in the test set in-
cluding binary object masks and paired shadow masks.
We use the binary object masks as tight mask to input to
LAYERDECOMP and merge the object mask and the cor-
responding shadow mask to create loose mask to input
to other inpainting methods. Similarly, to reduce hallu-
cination problems in traditional inpainting methods, the
loose masks are further dilated by 10 pixels. The aver-
age area of the loose mask is 2.35 times that of the tight
mask. As shown in Fig. S6, DESOBAv2 mostly features
outdoor scenes with hard object shadows cast on surfaces
with different materials and textures, adding more chal-
lenges to decompositing the visual effects.

More Visual Results. More visual comparison with
ControlNet Inpainting [9], SD-XL Inpainting [4], and Pow-
erPaint [10] on the three public benchmarks is provided in
Fig. S4, Fig. S5, and Fig. S6. It can be observed that, with
the assistance of the loose mask, the three baselines are able
to remove most parts of the target object. However, they
struggle to eliminate it entirely and face challenges in re-
moving the shadows associated with the target object. Ad-

ditionally, achieving photorealistic background completion
in human plausible style remains a significant challenge. In
contrast, our model, using only the tight mask, performs
consistently better across a wide range of data sources.

3. Evaluating Real-World Generalization in

Visual Effect Removal

To quantitatively evaluate the effectiveness of our model
in removing visual effects, we randomly sampled 500 im-
ages from the MuLAN dataset. After filtering out images
without prominent shadows or reflections, we obtained a
final test set of 44 images. A user study was conducted
with four participants, who evaluated whether our model
successfully generated clean background layers and faithful
foreground elements. The model achieved an overall suc-
cess rate of 78.98%, demonstrating strong generalization
capabilities for visual effect removal on real-world data.
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Figure S3. Visualization of results generated by model variants presented in Table 1 of the main paper. Our model can generate higher-
quality foreground and background layers and produce more plausible and realistic re-composite results by effectively modeling the visual
effects.

4. Additional Results for the Instruction-

Driven Object Removal Experiment

Qualitative Comparison. Fig. S7 presents additional com-
parison results with instruction-driven methods on the ob-
ject removal task on Emu-Edit Remove Set [1, 6]. Beyond
showcasing the superior object removal performance of our
model, these results further highlight its enhanced back-
ground integrity and completion capabilities.

Quantitative Comparison. We also perform a quanti-

tative comparison with instruction-driven methods, specif-
ically Emu-Edit [6] and OmniGen [8]. Using the released
generation results from Emu-Edit Remove Set [1], we eval-
uate the performance based on FID and CLIP-FID metrics.
For a fairer comparison, we use text-based masks as input to
our model. As shown in Table S2, our model outperforms
existing approaches by a large margin.



5. More Image Layer Decomposition Results

from LAYERDECOMP

As shown in Fig. S8, we provide comprehensive visualiza-
tion results from various data sources, including web im-
ages, public datasets, and the held-out test set. These results
demonstrate that our model is robust across diverse scenar-
ios.
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Figure S4. Object removal - comparison with mask-based methods on the RORD dataset. Our model, using tight input masks, gener-
ates more visually plausible results with fewer artifacts compared to ControlNet Inpainting [9], SD-XL Inpainting [4], and PowerPaint [10],
which all require loose mask input.
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Figure S5. Object removal - comparison with mask-based methods on the MULAN dataset. Our model, using tight input masks,
generates more visually plausible results with fewer artifacts compared to ControlNet Inpainting [9], SD-XL Inpainting [4], and Power-
Paint [10], which all require loose mask input.
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Figure S6. Object removal - comparison with mask-based methods on the DESOBAv2 dataset. Our model, using tight input masks,
generates more visually plausible results with fewer artifacts compared to ControlNet Inpainting [9], SD-XL Inpainting [4], and Power-
Paint [10], which all require loose mask input.
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Figure S7. Object removal - more comparison with instruction-driven methods on Emu-Edit [6] removal set. Combining with a text-
based grounding method, our model can effectively remove target objects and preserve background integrity, while existing instruction-
based editing methods, such as Emu-Edit [6], MGIE [2], and OmniGen [8], may struggle to fully remove the target or maintain background
consistency.
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Figure S8. Additional image decomposition results of our model on public benchmarks and web images. These results demonstrate the
robustness of our model across diverse data sources.


