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Figure S1. Noise distributions of the Galaxy S22 gyro sensor.

S1. Overview
In the supplementary material, we provide additional

analyses, implementation details and additional qualitative
results on GyroBlur-Synth and GyroBlur-Real. Specifically,
we provide:
• Network training details
• Details on the blur synthesis pipeline
• Additional analysis on the effect of our gyro error han-

dling
• Details on the datasets
• Details on our extension of the non-blind deblurring

methods
• Network architectures
• Additional qualitative results including real-world images

with moving objects

S2. Network Training Details

Generating erroneous camera motion field When gen-
erating camera motion fields, we add gyro sensor noise
and random rotational center shift to simulate real-world
gyro noise. To measure gyro sensor noise distributions, we
placed a Samsung Galaxy S22 smartphone on a stationary
table. We then collected gyro data for 120 seconds and es-
timated the noise distribution for the x, y and z axes re-
spectively. We found out that noise in the gyro data for each
axis follows distinct normal distributions (Fig. S1), charac-
terized by their respective means and standard deviations.
The estimated noise distributions are:

nx ∼ N (−0.00005643153, 0.00086316072) (1)

ny ∼ N (−0.00006369004, 0.00150239472) (2)

nz ∼ N (0.00021379517, 0.00076556432) (3)

where nx, ny and nz represent the noise distributions of
the x, y and z axes, respectively. The amount of rotational
center shift is randomly sampled from [−500, 500] pixels
for both x and y axes of the image plane following Hu et
al. [4].

Noise parameter Value

log2(shot noise) at ISO 100 -10.0009938243
log2(shot noise) at ISO 1600 -9.3348824266

Slope of log2(shot noise) - log2(read noise) 3.15578751
Intercept of log2(shot noise) - log2(read noise) 10.0003514152

Table S1. Noise parameters for RSBlur blur synthesis pipeline.
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Figure S2. Error map between accurate gyro feature map and er-
roneous gyro feature map for visualizing gyro refinement process.
(a) Error map before the gyro refinement blocks. (b) Error map af-
ter the first gyro refinement block. (c) Error map after the second
gyro refinement block.

Scheduling of α To apply the curriculum-learning-based
training strategy to train our network, we gradually increase
α from 0 to 1 during the training. Our scheduling protocol
for α is

α =

{
0.1 · ⌊ ep/10 ⌋ if ep < 100

1 otherwise
(4)

where ep denotes the current training epoch.

S3. Blur Synthesis Pipeline
As mentioned in our main paper, we adopt the RS-

Blur pipeline [8] to synthesize realistic blurred images in
GyroBlur-Synth. Our detailed process to generate the blurry
images in GyroBlur-Synth is as follows. For generating
each blurry image, we first sample a sharp image and a se-
quence of gyro data samples, and interpolate the gyro data
samples as described in our main paper. Then, following the
RSBlur pipeline, we warp the sharp image using the gyro
data samples, convert the color space of the warped sharp
images to the linear space, and average them to obtain a
blurred image. We then perform the remaining steps of the
RSBlur pipeline including the saturation synthesis, conver-
sion to RAW, noise synthesis, and camera ISP to obtain a
realistic blurred image. Regarding the shot and read noise,
we estimate their distributions from a Samsung Galaxy S22
ultra-wide camera, which are reported in Tab. S1. We re-
fer the readers to [8] for more details on the blur synthesis
process.
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Figure S3. Gyro sensor noise visualization. (a) Accurate camera
motion field (Blue line) and noisy camera motion field with σ =
20 (Red line). (b) Deblurred result with accurate camera motion
field. (c) Deblurred result with noisy camera motion field.
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Figure S4. Rotational center shift visualization. (a) Accurate cam-
era motion field (Yellow line) and erroneous camera motion field
with rotational center error (1000, 1000) (Red line). (b) Deblurred
result with the accurate camera motion field. (c) Deblurred result
with the erroneous camera motion field. (d) Deblurred result of
FFTformer [6].

Noise level 0 5σ 10σ 15σ 20σ

PSNR 27.44 27.39 27.37 27.36 27.30
SSIM 0.7850 0.7843 0.7837 0.7838 0.7824

Table S2. Analysis on robustness to gyro sensor noise. σ denotes
standard deviation of the noise distribution.

S4. Additional Analysis on the Effect of Our
Gyro Error Handling

S4.1. Visualization of the Effect of Gyro Refinement

To see the effect of the gyro refinement blocks, we vi-
sualize errors in gyro features by computing the difference
between the gyro features of erroneous and error-free gyro
data in Fig. S2. While the error map between two gyro fea-
tures before passing the gyro refinement blocks (Fig. S2
(a)) shows large error value, errors get reduced as the er-
roneous gyro feature passes consecutive gyro refinement
blocks (Fig. S2 (b) & (c)). This result indicates that gyro
refinement blocks do help the network to refine erroneous
gyro features and extract meaningful motion information
from erroneous gyro features.

Max. shift (px.) 0 250 500 750 1000 FFTformer [6]

PSNR 27.44 27.38 27.30 26.95 26.71 26.01
SSIM 0.7850 0.7829 0.7804 0.7705 0.7614 0.7481

Table S3. Analysis on robustness to rotational center shift.

Model PSNR SSIM

(a) NAFNet [2] 25.06 0.7085
(b) NAFNet + Camera motion field 24.57 0.6802
(c) (b) + Curriculum learning 24.61 0.6813
(d) Ours without curriculum learning 26.94 0.7667
(e) Ours with curriculum learning 27.28 0.7803

Table S4. Result of training NAFNet with the concatenation of
camera motion fields and blurry images.

S4.2. Robustness to Gyro Error
In this section, we analyze the robustness of our method

to gyro error. To this end, we construct camera motion field
variants with different amounts of gyro errors. We analyze
the error robustness with two gyro error sources, which
are gyro sensor noise and rotational center shift. Tab. S2
and Tab. S3 show quantitative results of GyroDeblurNet
on GyroBlur-Synth with different amount of gyro errors.
Tab. S2 shows the result of GyroDeblurNet with different
noise level. In the table, σ denotes the standard deviation
of noise distributions given in Eq. (1), Eq. (2) and Eq. (3).
To see the robustness to the noise only, rotational center
shift errors are not considered. Tab. S3 shows the results
of GyroDeblurNet with different amounts of rotational cen-
ter shift. Similarly, we do not consider gyro sensor noise to
see the robustness to the rotational center shift only.

As shown in Tab. S2, GyroDeblurNet shows strong ro-
bustness to the gyro sensor noise. The results show that Gy-
roDeblurNet can be applied to sensor data with higher sen-
sor noise without severe performance degradation. Fig. S3
demonstrates the robustness of our method to high gyro sen-
sor noise. Tab. S3 shows that model performance gradually
decreases as the amount of rotational center shift increases.
However, we can also observe that GyroDeblurNet can uti-
lize gyro data with large rotational center shift, e.g. 1000
pixels, by showing better performance than FFTformer [6]
even though it is trained with gyro data whose rotational
center shifts are sampled from [−500, 500]. Fig. S4 shows
the robustness of our method to large rotational center error
compared to FFTformer [6].

S4.3. Comparison against a Simple Extension of an
Existing Non-gyro Method

As our approach exploits additional gyro data to deblur
an image, one may wonder whether naı̈vely adopting gyro
data would improve the performance of existing non-gyro-



based deblurring networks. Here we argue that our gyro
error handling schemes including the gyro refinement and
gyro deblurring blocks are crucial for effectively handling
real-world gyro data, and naı̈vely extending a non-gyro-
based method to use gyro data results in performance degra-
dation rather than improvement.

To verify this, we conduct an experiment where we ex-
tend NAFNet [1], which is one of the non-gyro-based state-
of-the-art deblurring networks, to use gyro data. Specifi-
cally, we change the first layer of NAFNet to take a con-
catenation of a blurred image and a camera motion field as
input. Note that the modified NAFNet model takes a camera
motion field of the same spatial size as the blurred image un-
like GyroDeblurNet that takes a downsampled camera mo-
tion field. We then train the modified NAFNet model using
the training set of GyroBlur-Synth with and without cur-
riculum learning, and evaluate its performance on the test
set of GyroBlur-Synth.

Tab. S4 shows the evaluation result. As the table shows,
the modified NAFNet (Tab. S4-(b)) achieves lower PSNR
and SSIM scores than the original NAFNet model despite
using additional gyro data, and the curriculum learning-
based training strategy does not help the model to achieve
noticeable performance gain (Tab. S4-(c)). However, our
method without curriculum learning achieves significantly
higher PSNR and SSIM scores (Tab. S4-(d)) compared to
the naı̈ve extension of NAFNet, and our curriculum learn-
ing scheme further enhances the performance (Tab. S4-
(e)). This result proves that naı̈ve extension of a non-gyro
method cannot handle erroneous gyro data, and that our
gyro error handling scheme is crucial for handling real-
world gyro data.

S5. Dataset Details

Synthesizing moving objects We synthesize moving ob-
jects by randomly sampling moving directions and dis-
tances. When synthesizing a blurred image with a moving
object, we first randomly sample the direction of the mov-
ing object from [0◦, 360◦). Then, we sample the moving
distance of the object from the range of 30 to 70 pixels.
Post-processing GyroBlur-Real GyroBlur-Real pro-
vides both JPEG and raw DNG images. Nevertheless,
in our evaluations using GyroBlur-Real in our paper, we
use only raw DNG images. As our network requires 3-
channel images, in our evaluation, we first demosaicked raw
DNG images to use them. For demosaicking, we used the
postprocess() function of the Python rawpy package.
Synchronization between the gyro sensor and the cam-
era One well-known issue in using gyro data is that
the timestamps of the gyro sensor and the camera are
not synchronized. To resolve the issue when collecting the
GyroBlur-Real dataset, we used the Android API that sup-

Layer Input ch. Output ch. Kernel Stride Padding

Concat. c, c 2c - - -
GAP 2c 2c - - -

Conv1 2c c 1× 1 1 0
Mul. c c - - -

Conv2 c c 3× 3 1 1

Table S5. Detailed architecture of the gyro refinement block. GAP
denotes global average pooling operation.

ports synchronization between the gyro sensor and the cam-
era. Specifically, we used the Camera ITS test1 provided by
Android API to find the temporal offset between the cam-
era and the gyro sensor at each capture. After finding the
temporal offset, we used the temporal offset to compensate
the temporal misalignment between the camera and the gyro
sensor.

S6. Extension of the Non-Blind Deblurring
Methods

We compared our method with non-blind deblurring ap-
proaches that are designed to handle kernel errors [7, 10].
Since they are designed for uniform blur, we extended
them to handle non-uniform blur cases. Specifically, for the
method of Vasu et al. [10], we implemented a non-blind
deblurring method for non-uniform blur [3]. To apply the
implemented non-blind deblurring method to the GyroBlur-
Synth dataset, we converted the gyro data into patch-wise
blur kernels where the size of the kernels is 160 × 160
with 50% overlapping area. Then, we deblurred each im-
age in the training set of GyroBlur-Synth with regulariza-
tion strengths 0.001, 0.002, 0.005 and 0.01 and trained the
neural network of the method with the concatenation of the
deblurred images.

For the method of Nan et al. [7], we first converted the
blurry images into patches whose sizes are 160 × 160 with
50% overlapping area. Similarly, we converted the gyro data
into patch-wise blur kernels whose sizes are 160×160 with
50% overlapping area. Then, we applied the method of Nan
et al. [7] to each patch and alpha-blended the results to gen-
erate full-resolution results.

S7. Network Architecture

Tab. S5, Tab. S6, Tab. S7 and Tab. S8 show detailed ar-
chitectures of the gyro refinement block, gyro deblurring
block, gyro module and image deblurring module respec-
tively.

1https://source.android.com/docs/compatibility/cts/camera-its-
tests?#test sensor fusion



Layer Input ch. Output ch. Kernel Stride Padding

Concat. 256, 256 512 - - -
Conv1 512 18 3× 3 1 1

Deform. conv. 256 256 3× 3 1 1
Spatial attn. 256 256 - - -
NAFBlock 256 256 - - -

Concat. 256, 256 512 - - -
Conv2 512 256 3× 3 1 1

Table S6. Detailed architecture of the gyro deblurring block.

Layer Input ch. Output ch. Kernel Stride Padding

Conv1 16 64 3× 3 1 1
GRB1 64 64 - - -
Conv2 64 128 3× 3 2 1
GRB2 128 128 - - -
Conv3 128 256 3× 3 2 1

Table S7. Detailed network architecture of gyro module. GRB de-
notes the gyro refinement block.

S8. Additional Qualitative Results
Fig. S5, Fig. S6, Fig. S7 and Fig. S8 show additional

qualitative results on GyroBlur-Synth. Fig. S9, Fig. S10,
Fig. S11 show additional qualitative results on GyroBlur-
Real-S. Fig. S12 shows additional qualitative results on
real-world images with moving objects. We show our addi-
tional qualitative results with the results of Stripformer [9],
FFTformer [6], EggNet [5] for comparison.
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(b) Ground‐truth(a) Blurry (c) Stripformer [9]
(Single‐image)

(d) FFTformer [6]
(Single‐image)

(e) EggNet [5]
(Gyro‐based)

(f) Ours
(Gyro‐based)

Figure S5. Additional qualitative results on GyroBlur-Synth. In (a), red lines and blue lines visualize erroneous camera motion field and
accurate camera motion field respectively.
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(b) Ground‐truth (c) Stripformer [9]
(Single‐image)

(d) FFTformer [6]
(Single‐image)

(e) EggNet [5]
(Gyro‐based)

(f) Ours
(Gyro‐based)

(a) Blurry

Figure S6. Additional qualitative results on GyroBlur-Synth. In (a), red lines and blue lines visualize erroneous camera motion field and
accurate camera motion field respectively.
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(b) Ground‐truth (c) Stripformer [9]
(Single‐image)

(d) FFTformer [6]
(Single‐image)

(e) EggNet [5]
(Gyro‐based)

(f) Ours
(Gyro‐based)

(a) Blurry

Figure S7. Additional qualitative results on GyroBlur-Synth. In (a), red lines and blue lines visualize erroneous camera motion field and
accurate camera motion field respectively.
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(b) Ground‐truth (c) Stripformer [9]
(Single‐image)

(d) FFTformer [6]
(Single‐image)

(e) EggNet [5]
(Gyro‐based)

(f) Ours
(Gyro‐based)

(a) Blurry

Figure S8. Additional qualitative results on GyroBlur-Synth. In (a), red lines and blue lines visualize erroneous camera motion field and
accurate camera motion field respectively.



63

(a) Blurry (c) Stripformer [9]
(Single‐image)

(d) FFTformer [6]
(Single‐image)

(e) EggNet [5]
(Gyro‐based)

(f) Ours
(Gyro‐based)

(b) Camera motion field visualization

Figure S9. Additional qualitative results on GyroBlur-Real. In (b), red lines visualize real-world camera motion field.
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(a) Blurry (c) Stripformer [9]
(Single‐image)

(d) FFTformer [6]
(Single‐image)

(e) EggNet [5]
(Gyro‐based)

(f) Ours
(Gyro‐based)

(b) Camera motion field visualization

Figure S10. Additional qualitative results on GyroBlur-Real. In (b), red lines visualize real-world camera motion field.



(a) Blurry (b) Camera motion field visualization (c) Stripformer [9]
(Single‐image)

(d) FFTformer [6]
(Single‐image)

(e) EggNet [5]
(Gyro‐based)

(f) Ours
(Gyro)

(f) Ours
(Gyro‐based)

Figure S11. Additional qualitative results on GyroBlur-Real. In (b), red lines visualize real-world camera motion field.



(a) Blurry image (b) FFTformer [6] (c) EggNet [5] (d) Ours

Figure S12. Additional qualitative results on real-world image with moving objects.
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