ImViD: Immersive Volumetric Videos for Enhanced VR Engagement

Supplementary Material

A. Overview

Within the supplementary material, we provide:

* A more detailed introduction and analysis of existing
datasets for Dynamic Novel View Synthesis (NVS) tasks
in Appendix B.

* More benchmark results and discussion in Appendix C.

» Additional experiments details and STG++ implement
details in Appendix D.

* Some clarifications and more descriptions of technical de-
tails regarding capture rig in Appendix E.

* Real-time immersive volumetric video demos and other
dynamic scene reconstruction results are in our video.
Please refer to the attached .mp#4 file.

B. Comprehensive Summary of Datasets for
Dynamic Novel View Synthesis Tasks

The earliest studies on dynamic reconstruction have natu-
rally focused on human digital avatars. Datasets such as Hu-
man3.6M [18], Panoptic Sports [19], ZJ-Mocap [44], and
Tensor-4D [48] primarily focus on depicting simple human
actions but do not include backgrounds, which is crucial
to the immersive application experiences. We will intro-
duce more complex datasets that include environments from
monocular based and multi-view based.

Monocular acquisition systems are popular due to their
low cost and ease of construction. Datasets such as HyperN-
eRF [43], Dynamic Scene Dataset [60], and D2NeRF [56]
use a mobile phone as devices, capturing dynamic scenes
by waving the phone. However, these datasets suffer from
resolutions below 1080p, limited capture space (similar
to fixed-point shooting), and durations under one minute.
Although NeRF On-the-go [45] allows for larger capture
ranges by walking while shooting, high-quality reconstruc-
tions are confined to the vicinity of the capture path, and the
small field of view (FOV) limits prolonged observations of
specific scene positions.

Multi-camera data collection has gained significant at-
tention due to its ability to provide a larger FOV and richer
details. For instance, the Immersive Light Field dataset [6]
employs 46 cameras to capture 15 indoor and outdoor
scenes, while Technicolor [46] uses a 4x4 camera rig for 12
indoor sequences. The UCSD Dynamic Scene Dataset [34]
consists of 96 outdoor videos focused on single-person ac-
tivities captured by 10 cameras. The Plenoptic Dataset [28]
uses 21 cameras for 6 indoor scenes. Similarly, datasets
like [27, 33, 54] utilize 13, 18, and 24 cameras, respec-
tively, to capture dynamic scenes. However, all these setups
remain static during capture, limiting them to frontal views

and hindering 360° reconstruction. Additionally, the video
sequences are typically short, with a maximum duration of
2 minutes (often less than 30 seconds) and a maximum res-
olution of 3840x2160, which is insufficient for immersive
VR experiences.

Moreover, the previously mentioned datasets, whether
monocular or multi-view, lack sound recordings, despite the
importance of multimodality for immersion. The Replay
dataset [49] addresses this by focusing on long sequences
with professional actors in familiar settings. It employs a
ring of 8 static DSLR cameras paired with binaural micro-
phones and 3 head-mounted GoPro cameras, providing 46
videos at 4K. However, aside from the head-mounted cam-
eras, which can rotate slightly with head movements, all
other cameras remain static. Furthermore, the DSLR ar-
rangement does not align with human viewing habits in VR,
making them unsuitable as benchmarks for novel view syn-
thesis tasks. The latest work [9] presents a dataset of 28
scenes captured with a 360° camera, each including mul-
tiple audio and video sequences. However, this dataset is
constrained by a fixed-point shooting strategy, resulting in
sparse viewpoints that hinder the reconstruction of high-
quality dynamic scenes. Further comparisons between our
work and these datasets can be found in Tab. 8.

C. More Benchmark Results and Analysis

For fair evaluation, all of our experiments use the default
parameters recommended by these works.

C.1. Quantitative & Qualitative Results

Quantitative Results. Table 6 is an extension of Table 5.
Table 7 displays the train view performance of baselines and
STG++ on each 60-frame segment across different scenes.

Qualitative Results. Figure 8 shows the results of the test
view, while Figure 9 presents more results of the train view.
Here, we also include a comparison with the latest work
Ex4DGS *, whose code was released shortly before our sub-
mission, limiting our ability to investigate thoroughly. Fig-
ure 10 presents the Ex4DGS’s results from the same view-
points as Figure 5 showed in the main text. It performs
slightly worse in the challenging motion area due to incom-
plete dynamic and static partitioning.

C.2. Analysis

4DGS proposes a two-stage training approach. In the first
stage, the algorithm initializes a static scene using the Oth
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Figure 8. Test view results of three baselines and STG++ on Scenel, Scene2, Scene5, Sceneb6.

frame and limits the number of final points. It maintains
the number and color attributes of the Gaussians while only
predicting changes in their positions, rotations, and scal-
ing. This results in minimal model storage, leading to
better performance in the static parts of the scene com-
pared to other baselines, with reduced flickering. How-
ever, its performance declines significantly in scenes requir-
ing more points for detailed representation, and it cannot
address the floaters caused by inconsistent colors in adja-
cent views. The fitting of larger and faster motions and
suddenly-appear/disappear objects is particularly poor.

4Drotor uses dense point clouds as input, which in-
creases memory requirements, especially in large scenes,
leading to longer training times and a higher risk of mem-
ory overflow. However, by introducing rotors to extend 3D
Gaussians to 4D, the authors can directly adapt the density
control strategy of the original 3DGS to the t-dimensional
space. Consequently, it may perform better in areas with
significant motion, such as Figure 9 Scene2 Laboratory
around human hands.

D. STG++ (Color Mapping) Details

Although STG is not the smallest in terms of storage
among all baselines and cannot directly train a model with
300 frames (requiring splitting into multiple 60-frame seg-
ments), it achieves better results under the train-views com-

pared to other baselines. Therefore, we delve deeper into
its study, hoping it can serve as the foundational architec-
ture for our initial implementation of immersive volumetric
video. However, when viewing in SIBR_Viewer, we notice
two significant drawbacks:

1) In each 60-frame segment, when the viewpoint
changes, there is a noticeable flickering of scene points and
the presence of floaters, especially when the ground truth
of the train-views shows significant color differences due to
lighting occlusions and other objective reasons.

2) Besides the color inconsistency during view-
point changes within each segment, when we modify
SIBR_Viewer to continuously load multiple segments, the
transitions between segments become even more abrupt.
This is a drawback of segmented training, as the appear-
ance of the Gaussians cannot remain consistent between
segments.

Thus, we propose a learnable viewpoint-dependent affine
color transformation function ¢;(W,T) and maintain its
values across different segments. Here, ¢ is the index of
the camera, W is a 3x3 transformation matrix, and 7" is a
(1,3) offset vector. Just like the affine transformation, the
colors in rendered images C/ are related to the colors in real
scenes (SIBR_Viewer) C; as follows:

C/l=W-C;+T (13)

The loss is calculated between the rendered images C; and
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(a) The results of train views for three baselines on Scenel Opera_girl.
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(b) The results of train views for three baselines on Scene2 Laboratory.

Figure 9. More benchmark results visualization (Part 1).

the ground truth as: E. Clarifications and Technical Details.
Loss = (1 — A1) L1(gt, C) + M Dssim(gt, C;)  (14) E.1. About "Volumetric'" Term

You can get a more intuitive sense of the improvement In fact, both academia and industry have yet to provide a
from the video in supplementary materials. clear definition of volumetric video capture methods. Our
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(c) The results of train views for three baselines on Scene5 Rendition.
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(d) The results of train views for three baselines on Scene6 Puppy.

Figure 9. More benchmark results visualization (Part 2).

original intention was to define videos that use 3D recon- E.2. STG++ Limitations
struction technologies and provide a 6-DOF experience as
volumetric video, which is the future of media. Most ex-
isting volumetric videos are constructed from an outside-
looking-in manner, often lacking natural backgrounds and
lighting, which reduces immersion. Inspired by Google’s
work [6], we aim to develop videos offering a multi-modal,
inside-looking-out 6-DoF experience, and thus call it “im-
mersive volumetric video”.

We introduce viewpoint-based color transformation to ad-
dress global color inconsistencies caused by varying light-
ing conditions between cameras in real-world scenes (see
supp.video 03:41). However, local flickering remains a
complex issue due to variations in materials and environ-
mental lighting changes. It is still a significant challenge for
the current community, requiring more adaptive and fine-
grained processing. We will consider this in future work.
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Figure 10. Ex4DGS’s performance on the same views as Figure 5
showed in the main text.

Method Direction Score | Distance Score
w/o SFR 1.17 1.67
SFR+distance 1.69 3.02
SFR+direction 3.81 3.03
SFR+direction+distance 3.91 3.07

Figure 11. Ablation Studies Illustrate the Effectiveness of Our
Proposed Sound Field Reconstruction (SFR) Baseline. A total of
58 participants participated in the user study, rating their sense of
direction and distance based on results from various algorithms,
using a scale from 1 to 5 (1 being low and 5 being high).

E.3. More Validation of Sound Field Reconstruction

It is worth noting that, AV-NeRF [31] is the closest exist-
ing work to our goal of sound field reconstruction (SFR),
which means it also targets sound synthesis in a novel loca-
tion. However, it focuses solely on sound synthesis and uses
professional binaural audio acquisition equipment (which is
entirely different from our capture system) to collect sound
from various locations in space. As a result, its SFR method
cannot directly leverage data collected by our camera rig.
We will try to modify and adapt its approach for compari-
son with our baseline in the future.

But to further assess the effectiveness of each module in
our proposed SFR method, we have conducted an ablation
study based on user feedback, as shown in Figure 11. The
average scores for both metrics indicate that incorporating
direction and distance modeling in sound field reconstruc-
tion significantly enhances participants’ immersive video
experiences, further demonstrating our SFR algorithm as a
practical baseline.

E.4. Capture Rig Setups and Calibration

Time-Synchronized. We used GoPro’s official QR con-
trol app on mobile phone, enabling each camera to scan a
dynamically updating QR code for time synchronization.
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Figure 12. Sound Localization w & w/o Noise Reduction. The
yellow areas in the image represent the highest sound intensity
in each frame, clearly indicating the sound source’s angle change
relative to a specific camera.

Noise Reduction and Cart Speed. Our cart only gener-
ates noise from axle rotation during sharp turns. The de-
scription in main text L.250-253 mitigates this noise and
greatly reduces the impact of environmental sounds (e.g.,
wind) on sound quality. As shown in Figure 12, the de-
noised sound achieves clearer localization (left), while the
noisy sound results in more divergent localization (right).
This indicates that the sound quality we collected can not
only construct multi-modal volumetric videos but also con-
tribute to sound field, inspiring future work on sound lo-
calization and reconstruction from multiple sound sources.
Additionally, while the cart experiences slight shaking on
uneven terrain, it moves as a rigid body, so its speed is not
limited. This prior knowledge can even accelerate our cal-
ibration process. The slow speed in this work is primarily
due to safety considerations, and we plan to collect faster-
moving data in the future.

Calibration. Although we have completed the calibration
of the data intended for release, including both fixed-point
and mobile shooting, before the submission deadline, it is
important to note that, for moving shots, we have tested
various open-source algorithms, but none offer an efficient
solution for moving multi-view data. Using the original
COLMAP takes days to calibrate poses for each frame in
long videos. A feasible approach to speed up may refer to
7. We also look forward to working with colleagues in this
community to explore more efficient and accurate calibra-
tion solutions using this dataset.

E.5. Continuously Updated Dataset

Currently, other segments in Scenel include high-speed
motions, as shown in Figure 13. And we will continue to
update the dataset, increase its richness to make more con-
tributions to the development of the community.

"Bernhard Kerbl et al. A Hierarchical 3D Gaussian Representation for
Real-Time Rendering of Very Large Datasets. TOG, 2024.1



Table 6. Performance of three baseline methods and STG++ on the ImViD Dataset. All methods selected cam10 as the test view.

Scenel Opera_girl Scene2 Laboratory Scene5 Violin Scene6 Puppy
PSNRtT SSIMT LPIPS] PSNRT SSIMt LPIPS| PSNRT SSIMT LPIPS| PSNRT SSIMt LPIPS|

4DGS 23.227  0.753 0410 25798  0.889 0.176 | 26.586 0.842 0.356 18.121  0.222 0.711
4DRotor 27263  0.775 0.328 | 28.007 0918 0.098  24.083 | 0.850 0.296 17916  0.298 0.331
STG 28.482  0.786 0.287 26306 0910 0.114  23.144  0.846 0.317 20497 0.594 0.211
STG++ | 31.240 0.799 0277  27.581 0916 0.107  25.747 0.834 0.310 = 20.533  0.598 0.202

Method

Table 7. Comparison of average metrics for three baselines and STG++ across four scenes. Due to its smaller model size, 4DGS [55] can
train 300 frames at once, so there are no segmented results.

Frames1-60 Frames60-120 Frames120-180 Frames180-240 Frames240-300 Avarage
PSNRT SSIMt LPIPS| PSNRf SSIMT LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIMT LPIPS| PSNRT SSIMtT LPIPS| PSNRT SSIMT LPIPS|

4DGS - - - - - - - - - - - - - - - 35.005 = 0.930 0.156

s 10 4DRotor  33.502  0.912 0.142 33735 0913 0.137 33749 0913 0.137 31460  0.893 0.155 33718 0913 0.139 33233 0.909 0.142
cenel Opera

STG 34915 0.920 0.127 35343 0922 0.125 35478 0924 0.124 35496  0.922 0.125 34913 0921 0.126 35229 0922 0.125

STG++  35.195 0922 0.125 35603  0.923 0.123 35822 0924 0.122 35738 0.924 0.123 35738  0.925 0.123 | 35.619 0.924 0.123
4DGS - - - - - - - - - - - - - - - 32701 0.949 0.078
4DRotor  36.207  0.967 0.049  36.519  0.967 0.046  34.593 0.96 0.067  36.484  0.968 0.046  36.679  0.967 0.049 | 36.096 0.966 0.051

Scene2 Laboratory

STG 33405 0.949 0.077  33.257  0.949 0.078  33.641 0951 0.077  33.140  0.948 0.081 33298  0.950 0.078  33.348  0.949 0.078
STG++ 33450  0.950 0.079  33.666  0.951 0.076  33.616 0951 0.077 33452 0.950 0.079  33.748  0.952 0.073  33.586 0.951 0.076
4DGS - - - - - - - - - - - - - - - 33.645 0918 0.183
Scene5 Rendition 4DRotor  33.398  0.935 0.135 33361 0935 0.133 33255 0934 0.136  33.398  0.935 0.132  32.638 0932 0.136 33210 = 0.934 0.134
STG 34.508  0.930 0.158  34.029  0.929 0.161 33.900 0.928 0.165 34.178  0.929 0.163 34222 0.929 0.161 34.167  0.929 0.162
STG++ 34426  0.928 0.160 34277  0.929 0.163 34169  0.928 0.165 34.407  0.929 0.161 34203 0.927 0.159 | 34296 0.928 0.162
4DGS - - - - - - - - - - - - - - - 21.117 0450 0.561
Scene6 Puppy 4DRotor  21.902  0.643 0.301 21.988  0.646 0297 21719  0.629 0319  21.884  0.644 0297  21.844  0.645 0300  21.867  0.641 0.303
STG 23307 0.714 0247 23381 0.717 0243 23387 0718 0.241 23331 0.717 0245 23413 0718 0.241 23.364 0.716 0.243

STG++ 23316 0.714 0246 23423  0.719 0240 23392 0.719 0.241 23314 0.716 0246 23438 0.719 0240 | 23377 0.717 0.242

Figure 13. High-Speed Motions Data in Our Dataset ImViD. Scene 1: opera boy spinning kick.



Table 8. Existing real-world datasets for dynamic novel view synthesis.

Datasets No.Scene  Outdoor/Indoor Cameras Mobility Resolution Angles Duration FPS  Multimodality ~Content
PanopticSports [19] 65 Indoor 480 cameras Static 640x480 360° Smins 25 X Human-centric actions
Has a number of close-ups sequences, captured
Technicolor [46] 12 Indoor 16 cameras Static 2048x1088 Frontal 2s 30 X medium angle scenes and other animated scenes
where the movement does not come from a human.
Immersive-Lightfield [6] 15 both 46 cameras Static 2560x1920 Frontal 10-30s 30 X Simple and slow motion of human,animals,objects
HyperNeRF [43] 17 Indoor 1 hand-held phone  Fixed-point Waving ~ 1920x1080 Frontal 30-60s 30 X Waving a mobile phone in front of a moving scene,
object-centric
Dynamic Scene Datasets 1 Mobile phone Fixed-point Waving . . .
(NVIDIA) [60] 8 Outdoor 112 cameras IStatic 1920x1080 Frontal 5s 60 X Simple body motions (facial, jump, etc)
UCSD Dynamic [34] 96 Outdoor 10 cameras Static 1920x1080 Frontal 1-2mins 120 X Various visual effects and human interactions
ZJU-Mocap [44] 10 Indoor 21 cameras Static 1024x1024 360° 20s 50 X Simple body motions (punch, kick, etc.)
Contains high specularity, translucency and trans-
 yatac ~ parency objects, motions with changing topology,
:E:;E;E{;??ETE,(SW 6 Indoor 21 cameras Static 2704x2028 Frontal 10-30s 30 X selfcast moving shadows, volumetric effects, vari-
- ous lighting conditions and multiple people moving
around in open living room space
D2NeRF [56] 10 Indoor dual-hold phone ~ Fixed-point Waving ~ 1920x1080 Frontal 55 30 X Contains more challenging scenarios with rapid mo-
tion and non-trivial dynamic shadows
iPhone Datasets [15] 14 both 1 hand-held phone lesdfpom(‘ ‘Waving 640x480 Frontal 8-155 30060 X Fcu.lurmg mm—rcpcguvc vm(m()n, from various cate-
/2 cameras /Static gories such as generic objects, humans, and pets
Meetroom Datasets [27] 4 Indoor 13 cameras Static 1280x720 Frontal 105 30 X One or three persons have discussion, working, trim-
ming in a meeting room
ENeRF-Outdoor [33] 4 Outdoor 18 cameras Static 1920x1080 Frontal 20-40s 30 X Complex human motions
Replay [49] 46 Indoor 12 cameras Static 3840x2160 360° Smins 30 /(Audioy  Dancing, chatting, playing video games, unwrapping
presents, playing ping pong
< . X Includes more realistic observations such as pedestri-
Campus Datasets [54] 6 Outdoor 24 cameras Static 38402160 Frontal 5-10s 30 . . .
ans, moving cars, and grasses with people playing
3 N, S S _ _ Contains diverse subjects like skating, a dog eating
MoDGS [36] 6 both 1 cameras Static - Frontal X food, YOGA. otc.
DiVa-360 [37] 53 Indoor 53 cameras Static 1280x720 Frontal sis 120 (Audio) ~ For Object-centric tasks. Contains dynamic objects
and intricate hand-object interactions.
Including 10 outdoor and 2 indoor scenes, features a
NeRF On-the-go [45] 12 both 1 hand-held phone Moveable 40323024 360° 5-10s 30 X wide range of dynamic objects including pedesrians,
cyclists, strollers, toys, cars, robots, and trams), along
with diverse occlusion ratios ranging from 5% to 30%
3604X [9] 28 both 1 360%cameras and Static 5760x2880 360° 10s (2152 sequence) 30 (Audioy  Capture in 17 cities across 5 countries.Panoptic per-
1 Spectacles cameras spective to scene understanding with audio
Seven common indoor and outdoor scenes in daily
life, including opera, face-to-face communication,
teaching, discussion, music performance, interaction
ImViD(Ours) 7 both 46 cameras Moveable  5312x2988  Frontal and 360° 1-5mins 60 v(Audigy ~ “ithpets. and playing. Each scene has high-quality

synchronized multi-view video and audio with a dura-
tion of more than 1 minute, and contains rich elements
such as various small objects, glass, and changes in
light and shadow
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