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A. Implementation Details on Pretraining and
Fine-tuning

A.1. Architectures of Adapter and Heads
Figure S-1 illustrates the architectures of the adapters and
projection head. The adapter is attached to CLIP’s im-
age encoder (Figure S-1a). With ViT-B/16 as the image
encoder, we obtain 512-dimensional (dim) tokens. The
adapter is a lightweight network comprising N = 4 mod-
ified transformer blocks (TransBlocks). The multiheaded
self-attention (MSA) layer has 6 attention heads, each pro-
cessing 64-dim queries, keys, and values, producing a
concatenated 384-dim attention output, which is projected
back to 512-dim via a linear layer. The feedforward net-
work (FFN) following MSA has a hidden layer size of
1024, set to 2x the input dimension instead of the stan-
dard 4x increase. These modifications make our TransBlock
parameter-efficient (1.8M parameters).

After the adapter, two parallel heads exist: the HoM head
for higher-order moment-based image representation and
the MIM head for masked image modeling. Both share the
same architecture but have different parameters, as shown in
Figure S-1b. Each consists of a 3-layer MLP with dimen-
sions input dim→1024→1024→256. GELU activations
are applied after the first two layers. The third layer out-
puts 256-dim features, which are L2-normalized and passed
through a weight-normalized linear layer. The 256×K
weight matrix of this layer represents K L2-normalized 256-
dim prototypes, where K=4096. The outputs are scaled by
a temperature (temp) parameter and fed into the softmax
function to produce probability distributions over the proto-
types. The HoM head has 4.5M parameters, while the MIM
head has 2.9M.

A.2. Hyperparameters of Pretraining
We mainly follow the training setup of DINOv2 [S-2], and
implement our HoM-DINO based on its code repository.
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Figure S-1. Illustration of adapter (a) and projection head (b) with
ViT-B/16 as the image encoder.

Hyperparameter Value

Epoch 100
Batch size 200

Learning Rate (LR) 2e-5 → 5e-6
LR schedule Cosine decay
Optimizer AdamW
Weight decay 0.04 → 0.4

Stochastic depth 0.1
Gradient clipping 3.0

Teacher EMA momentum 0.996 → 1.0
Teacher temp 0.04 → 0.07
Teacher temp warmup epoch 30
Student temp 0.1

MIM image mask prob 0.5
MIM patch mask ratio U(0.1, 0.5)

HoM loss weight 1.0
MIM loss weight 1.0

Augmentation As in DINO [S-1]

Table S-1. Hyperparameters of pretraining.

As in DINO, we adopt centering and sharpening techniques
to prevent model collapse.

We summarize the hyperparameters in Table S-1. We
train the models for 100 epochs using a batch size of 200.
The learning rate starts at 2e-5 and gradually reduces to 5e-
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6 using a cosine decay schedule. We use the AdamW opti-
mizer with a weight decay following a cosine schedule from
0.04 to 0.4. We apply stochastic depth with a rate of 0.1 and
gradient clipping at a threshold of 3.0. The student’s tem-
perature is set to 0.1 while we use a linear warm-up for the
teacher’s temperature from 0.04 to 0.07 during the first 30
epochs. The teacher is updated with an exponential mov-
ing average (EMA) of the student, with a momentum value
[0.996, 1.0] following a cosine schedule. For masked im-
age modeling (MIM), we mask the images in a batch with
a probability (prob) of 0.5 and the mask ratio for the patch
tokens is sampled uniformly in [0.1, 0.5]. The weights of
HoM loss and MIM loss are both set to 1.0. We adopt the
same data augmentation strategy as DINO. We do not use
local crops as we find they bring no further improvement.

A.3. Hyperparameters of Fine-tuning

As in IsSynth [S-3], DISEF [S-4] and DataDream [S-5], we
employ a mixed training strategy that simultaneously uses
real and synthetic (synt) images within each batch. Our ob-
jective function comprises two cross-entropy (CE) losses,
i.e., the loss of V-Classifier and loss of VL-Classifier, which
are weighted equally. Each batch of size B contains B/2
real and B/2 synthetic images. Real and synthetic image
losses are computed separately and combined with a weight.

The hyperparameters of fine-tuning for few-shot tasks
are presented in Table S-2. For ImagineFSL, we use
AdamW optimizer with a cosine decay of learning rate
(LR), a weight decay of 1e-4 and a batch size of 128. We
perform a grid search for epochs from {10, 20, · · · , 80} and
for the adapter LR (denoted as base LR) from {1e-6, 1e-5,
1e-4, 1e-3} on the validation set of each task. The LR for
the V-Classifier and VL-classifier is set to 10 times and 0.2
times base LR, respectively. For image augmentations, we
follow implementation of DataDream. The setting of hy-
perparameters of ImagineFSLLoRA is basically same as that
of ImagineFSL, with some notable differences. The first
difference is that it searches the rank and weight of LoRA
among {16, 32, 64} and {32, 64}, respectively; besides, the
dropout for LoRA is set to 0.1 and VL-Classifier has the
same LR with adapter. The second difference is that we fix
the epoch to 10 for decreasing the cost, as ImagineFSLLoRA

is more expensive than ImagineFSL.

For zero-shot recognition, we perform fine-tuning ex-
clusively on synthetic images, hence the loss only pertains
to these images; other hyperparameters remain the same
as those used in few-shot tasks. For domain generaliza-
tion, we train with a 16-shot setting, with hyperparameters
identical to those in few-shot tasks. For ImageNet-V2 and
ImageNet-A, we use the corresponding synthetic images
from SyntIN1K, while for ImageNet-S and ImageNet-R, we
specially synthesize images for them.

Hyperparameter ImagineFSL ImagineFSLLoRA

Epoch {10, 20, · · · , 80} 10
Batch size 128 128

Base LR {1e-6, 1e-5, 1e-4, 1e-3} {1e-6, 1e-5, 1e-4, 1e-3}
V-Classifier LR Base LR × 10 Base LR × 10
VL-Classifier LR Base LR × 0.2 Base LR × 1
LR schedule Cosine decay Cosine decay
Optimizer AdamW AdamW
Weight decay 1e-4 1e-4
Augmentation As in DataDream [S-5] As in DataDream [S-5]

V-Classifier loss weight 1.0 1.0
VL-Classifier loss weight 1.0 1.0
Real image loss weight 0.8 0.8
Synt image loss weight 0.2 0.2

LoRA rank – {16, 32, 64}
LoRA weight – {32, 64}
LoRA dropout – 0.1

Table S-2. Hyperparameters of fine-tuning.

A.4. Implementations of Compared Methods in
Pretraining

Competing Self-SL methods. For DINOv2 [S-2], we em-
ploy the same projection head as in our setup. We use cen-
tering techniques to normalize the teacher’s outputs and ob-
serve stable training even without KeLeo regularization. We
do not use local crops, as combination of them increases
memory usage without improving performance in the few-
shot setting. The hyperparameter configuration is consistent
with the optimal settings used in our method.

For MAE [S-6], we design the decoder as a single Trans-
Block, which is followed by layer normalization plus a lin-
ear layer for pixel prediction. We strictly follow the hyper-
parameter setting of the original paper. Due to our limited
computing resource, we use a batch size of 2048 and thus
the LR is adjusted accordingly. We adopt the official code
released by the original authors for implementations.

For SynCLR [S-7], we modify the 3-layer MLP projec-
tion head and the 2-layer MLP prediction head to reduce the
number of parameters. Specifically, we decrease the hidden
dimension of both MLPs from 4096 to 2048. Additionally,
we do not use local crops during training. The projection
head for MIM loss remains consistent with our method. We
conduct experiment with the official code, following origi-
nal hyperparameter settings, except for using a batch size of
200 with a correspondingly reduced LR.

Competing distribution modeling methods. Table S-
3 summarizes image representations of different methods.
G2DeNet [S-8] assumes deep features follow Gaussian dis-
tribution. According to practice of the original paper, we
add a linear layer after the adapter, decreasing the dimen-
sion of output tokens to 128. For all tokens including
[CLS] token and patch tokens, we compute their mean µ
and covariance matrix Σ. Then, we obtain the Gaussian
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Image
Repr Dim Expression Avg Acc

DINOv2 512 [CLS] 63.3/77.2

G2DeNet [S-8] 8385
[

Σ+µµT µ

µT 1

]1/2

64.0/77.3

MP [S-10] 2087
[
[CLS]; MHC3(F)

]
63.0/76.5

HoM 2048
[
[CLS]; m1; m2; m3

]
64.5/77.6

Table S-3. Comparison of image representation (repr).

N (µ,Σ) as the image representation, which is further em-
bedded into the space of symmetric positive define matrices:

N (µ,Σ) 7→G=
[
Σ+µµT µ

µT 1

]1/2
, where the superscript de-

notes the matrix square root that functions as a structural
normalization. Finally, we stack the upper-triangular entries
of G into a vector. As the image representation of G2DeNet
is large, we redesign the projection head with dimensions
8385 → 512 → 1024 → 256 to achieve a reasonable pa-
rameter count relative to the adapter. For the implementa-
tion of the matrix square root, we employ the fast iterative
algorithm proposed in [S-9].

MP [S-10] introduces a module called multi-head convo-
lutional cross-covariance (MHC3) to capture second-order
statistics. To reduce the size of MP representations, we split
tokens into eight heads and compute the cross-covariance
(XCov) matrix between the adjacent heads. This results in
seven XCov matrices, which are stacked and passed to two
consecutive 3×3 convolutions with stride 2, interleaved by
GELU. The final image representation is a 2087-dim vector
of the form

[
[CLS];MHC3(F)

]
where F denotes the ma-

trix of all patch tokens. Notably, unlike matrix square root
for the covariance matrices [S-9], MP applies no structural
normalization to the cross-covariance matrices. Our imple-
mentation of MP is based on the authors’ code.

B. Implementation Details on Synthesizing
both Captions and Images

We first describe our philosophy on design of the factors
and the Prompt Template (PTe) for GPT-4 to analyze them.
Then we introduce four patterns that constitute image cap-
tions and how we instruct GPT-4 to produce exemplary cap-
tions, followed by the PTe for Llama to generate extensive
captions. We finally summarize all the synthetic datasets.

B.1. Analyzing Factors via GPT-4
We identify five factors that play an important role in consti-
tuting image captions, i.e., attribute, viewpoint, background
(BG), lighting condition (LC) and cause of degradation of
images (CD). The factors are described briefly as follows.

Attribute This factor pertains to the intrinsic character-
istics of a specific concept (i.e., class). The ob-
jects, things, or scenes associated with this concept

share common properties yet exhibit internal varia-
tions. These encourage generative models to focus
on the characteristic traits unique to the concept while
also accounting for differences, such as varied coat
patterns within the same breed of cat. It assists LLMs
in generating diverse captions for the given class.

Viewpoint Real-world photos are often taken from differ-
ent angles (e.g., front and side) and distances (e.g.,
long shot and close-up). However, the T2I models
may bias toward frontal, mid-distance views unless ex-
plicitly instructed. Through analysis of viewpoints via
GPT-4, we have a wide range of shooting angles and
distances to better replicate real-life scenes.

Background (BG) We obtain typical environments in
which the specific class often appear by querying GPT-
4. This makes the scenes of the generated images more
heterogeneous and realistic.

Light Condition (LC) To simulate real-world photo
shooting conditions, we collect via GPT-4 a wide
variety of lighting conditions, spanning changes in
both position of light sources and times of day and
weather. This helps avoid the default single lighting
(usually bright and soft) of the T2I model.

Cause of Degradation (CD) We note that real-world pho-
tos sometimes suffer from poor quality due to reasons
such as blurring or poor focus. So we specifically set
up a factor to simulate this situation, without which
T2I models often tend to generate high-quality images.

Among the five factors, the attribute that encompasses
rich visual characteristics is customized for each distinct
concept. The background (BG) that spans various environ-
ments is also customized. The remaining factors, i.e., view-
point, LC and CD, are shared across concepts. We query
GPT-4 to thoroughly analyze these factors. For example,
for attribute, we ask GPT-4 as follows:

PTe for GPT-4 to analyze factors
Generate a list of 20 distinct visual attributes that distinguish
this particular {concept} from the others while accommodat-
ing variations within the {concept} in everyday photographs.
Present this list as a Python array, with each element being a
concise phrase that describes a unique attribute.

B.2. Generate Exemplary Captions via GPT-4
Based on these factors, we design four patterns for system-
atic caption generation. Attribute and viewpoint are fun-
damental factors included in all patterns. The Base-pattern
contains only these two factors, while the other three pat-
terns add one additional factor each. We summarize them
in Table S-4. Emphasizing attribute and viewpoint in cap-
tions is crucial for mitigating the possible bias of the T2I
models and maximizing image diversity. We do not specify
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Base-pattern ✓ ✓

BG-pattern ✓ ✓ ✓

LC-pattern ✓ ✓ ✓

CD-pattern ✓ ✓ ✓

Table S-4. Four patterns to synthesize captions.

all five features in one caption, which avoid generation of
lengthy and complex captions and meanwhile allow more
randomness for the generative model.

For each concept, we prompt GPT-4 to generate ten ex-
emplary captions per pattern. We select a specific instance
for each factor provided to GPT-4. Take as an example the
BG-pattern that contains three factors, i.e., attribute, view-
point, and background, the prompt to GPT-4 is as follows:

PTe for GPT-4 to generate exemplary captions
Your task is to create diverse and contextually rich cap-
tions for {concept}, which will serve as prompts for text-to-
image models such as stable diffusion to generate images. To
achieve this, consider the essential factors that influence vi-
sual image generation as follows: attribute that visually dis-
tinguishes the {concept}, viewpoint of the camera to capture
the scenario, and background where the {concept} is pho-
tographed. These factors are crucial not only for generating
images representative of various categories but also for en-
suring the synthesized images reflect common photographic
practices in everyday life.
For the {concept}, you will be provided with specific
forms for the factors, i.e., attribute: {attribute}, viewpoint:
{viewpoint} and background: {background}. By integrating
them, you will generate a caption of less than 36 words. Use
concise, clear and straightforward language, avoiding extrav-
agant embellishments and vague expressions.

B.3. Extensive Image Caption Generation via
Llama

Due to expensive cost of accessing GPT-4 API, we deploy
the lightweight Llama 3 8B for generating extensive cap-
tions. To this end, we design the template prompts for
Llama, where exemplary captions generated by GPT-4 are
provided to facilitate in-context learning. For a given con-
cept, a pattern is first selected, and then the specific forms
of factors associated with this pattern, alongside three con-
textually relevant examples, are also chosen randomly.

Below we take the BG-pattern as an example, present-
ing the PTe in the following. The generic placeholder
{concept} will be replaced by a specific target concept,
and the detailed information for attributes, viewpoints, and
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Caltech 100 0.45 0.40 0.10 0.05
Aircraft 100 0.45 0.40 0.10 0.05

Cars 196 0.45 0.40 0.10 0.05
Food 101 0.45 0.40 0.10 0.05
Pets 37 0.45 0.40 0.10 0.05

Flowers 102 0.45 0.40 0.10 0.05
DTD 47 1.00 – – –

EuroSAT 10 1.00 – – –
SUN 397 0.85 – 0.10 0.05

UCF101 101 0.45 0.40 0.10 0.05
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n ImageNet-V2 1,000 – – – –

ImageNet-S 1,000 0.70 0.30 – –
ImageNet-A 200 – – – –
ImageNet-R 200 0.70 0.30 – –

Table S-5. Summary of synthetic datasets. The percentage of gen-
erated images per pattern is provided.

backgrounds will be inserted into the respective placehold-
ers: {}, {}, and {} before the arrows →. The corresponding
examples will be inserted into the placeholder {} after the
arrow.

PTe for Llama to generate captions for BG-pattern
Your task is to generate an image caption for a {concept}, by
considering the following factors: attribute, viewpoint, and
background. The caption should be suitable for use as a tex-
tual prompt for Stable Diffusion, ensuring that the generated
image resembles a real-life photo. Use the three examples
provided below to guide the generation of the caption:
{}, {} and {} → {}
{}, {} and {} → {}
{}, {} and {} → {}
{}, {} and {} →

B.4. Summary of Synthetic Images
In Table S-5, we summarize the synthetic datasets, pro-
viding the percentage of synthetic images per pattern. We
build two imagined base sets, i.e., SyntIN1K where the con-
cepts are the 1,000 category names of ImageNet-1K, and
SyntIN1.5K where the concepts contain these 1,000 cate-
gories plus additional 500 class names randomly selected
from ImageNet-21K. Besides, we synthesize task-specific
datasets for 11 downstream datasets. For domain general-
ization, synthesizing images is a little different and is de-
scribed below.
ImageNet-S. The sketch images capture the essential
lines, shapes and contours of an object or scene, rather than
details such as colors or textures. Therefore, we define the
attribute as the type of sketches shared by all classes, which
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Figure S-2. Comparison to prior methods on individual 11 datasets. This figure complements Table 2 in the main paper.

is called style-attribute. Besides, we use simple handcrafted
textual prompts and generate images for only two patterns,
i.e., the Base-pattern and BG-pattern. Specifically, the tex-
tual prompt to SD3 for the Base-pattern is “Black and white
{style-attribute}, a photo of a {concept}”, while for the BG-
pattern the prompt is “Black and white {style-attribute}, a
photo of a {concept} with white background”. To analyze
the type of sketches, we ask GPT-4 as follows:

Query for GPT-4 to analyze types of sketches
Provide a list of 10 distinct styles of sketch that could ap-
pear in everyday photographs. Present this list as a Python
array, with each element being a concise phrase that describes
a unique type of sketches.

ImageNet-R. Hendrycks et al. [S-11] have previously
identified 15 artistic renditions. However, these renditions
are coarse-grained. We further ask GPT-4 to refine them,
obtaining fine-grained renditions to enhance the diversity,
e.g., “anime cartoon” is a refined rendition for “cartoon”.

PTe for GPT-4 to analyze rendition
For {rendition} images, provide 3 refined artistic styles of
{rendition} with the order of popularity in everyday life.
Present your answer as a Python array with each element in
a format like “style {rendition}” that describes a unique type
of {rendition}.

For ImageNet-R, we use only two patterns for image
generation, analogous to ImageNet-S. The prompt for the
Base-pattern is straightforward: “{rendition}, a photo of
a {concept}.” For the BG-pattern, we employ the prompt
“{rendition}, a photo of a {concept} with {background},”
where the background is concept-specific and retrieved by
GPT-4 as described in Section B.1.

C. Detailed K-shot Recognition Results on 11
Datasets

In Table 2 of the main paper, we compare the average accu-
racies across 11 datasets for each K-shot setting. Detailed
results for individual datasets are presented in Figure S-2,



where the results of PromptSRC [S-12] and LLaMP [S-
13] are from their respective papers, while the results of
other methods are from CLIP-LoRA [S-14]. We observe
that ImagineFSL consistently outperforms the competing
methods across all shot settings, as evidenced by the av-
erage accuracies over the 11 datasets. Additionally, it either
surpasses or matches the second-best method on individ-
ual datasets, except for EuroSAT. Notably, ImagineFSLLoRA
exhibits significant improvements both in terms of average
performance across the 11 datasets and in individual dataset
performance.

D. Additional Experiments
In this section, we conduct additional experiments to evalu-
ate the proposed methods.

D.1. Base-to-New Generalization
We adopt the evaluation protocol from CoOpOp [S-15]
and compare ImagineFSLLoRA with previous methods on
the base-to-new generalization task. Specifically, follow-
ing DISEF [S-4], we fine-tune the pretrained model using
16-shot real images along with all synthetic images from
the base categories. The fine-tuning hyperparameters are
consistent with those described in Section A.3. The model
performance is evaluated on both base and new categories,
and the harmonic mean (HM) is computed as an overall per-
formance metric. The results are presented in Table S-6.

First, our method achieves the best performance across
all 11 datasets on the base categories, outperforming
PromptSRC by an average margin of 2.9%. Second, our
method achieves top performance on 8 out of 11 datasets
on the new categories. Notably, although both methods
utilize synthetic images, ImagineFSLLoRA consistently sur-
passes DISEF across all datasets on the new categories,
clearly demonstrating its superior generalization capability.
Finally, our method achieves best results in terms of HM
on 9 out of 11 datasets, outperforming PromptSRC by an
average margin of 1.0%.

D.2. Extra Ablation
Is adapter for text encoder helpful? Since we have syn-
thesized both text and images, it is natural to consider using
both modalities for CLIP adaptation. To this end, we at-
tach a text adapter comprising three modified TransBlocks
to the CLIP text encoder. This introduces an extra CLIP
loss [S-16] to the Self-SL objective, which is consistent
with the design of SLIP [S-24]. We perform pretraining
and fine-tuning using the same settings described in Sec-
tions A.2 and A.3. Table S-7a presents the results. We ob-
serve that incorporating the text adapter leads to a perfor-
mance decline, particularly on ImageNet, and the average
accuracy drops by 0.8% in both 1-shot and 16-shot settings.
A similar phenomenon has also been observed in previous

Dataset CLIP
[S-16]

CoOp
[S-17]

PromptSRC
[S-12]

DISEF∗

[S-4] ImagineFSLLoRA
∗

ImageNet
Base 72.4 76.5 77.6 78.3 79.4
New 68.1 67.9 70.7 71.0 71.3
HM 70.2 71.9 74.0 74.5 75.1

Caltech
Base 96.8 98.0 98.1 98.5 98.7
New 94.0 89.8 94.0 93.9 94.1
HM 95.4 93.7 96.0 96.1 96.3

Aircraft
Base 27.2 40.4 42.7 55.9 56.7
New 36.3 22.3 37.9 34.3 38.0
HM 31.1 28.7 40.2 42.5 45.5

Cars
Base 63.4 78.1 78.3 84.1 85.5
New 74.9 60.4 75.0 68.8 72.2
HM 68.7 68.1 76.6 75.7 78.3

Food
Base 90.1 88.3 90.7 90.6 90.7
New 91.2 82.3 91.5 91.5 91.6
HM 90.6 85.2 91.1 91.0 91.1

Pets
Base 91.2 93.7 95.3 96.4 96.4
New 97.3 95.3 97.3 97.7 97.8
HM 94.1 94.5 96.3 97.0 97.1

Flowers
Base 72.1 97.6 98.1 98.6 99.0
New 77.8 59.7 76.5 72.7 74.3
HM 74.8 74.1 86.0 83.7 84.9

DTD
Base 53.2 79.4 83.4 83.6 83.6
New 59.9 41.2 63.0 64.4 64.5
HM 56.4 54.2 71.8 72.7 72.8

EuroSAT
Base 56.5 92.2 92.9 98.0 98.6
New 64.1 54.7 73.9 72.9 74.0
HM 60.0 68.7 82.3 83.6 84.5

SUN
Base 69.4 80.6 82.7 83.1 83.6
New 75.4 65.9 78.5 78.2 78.7
HM 72.3 72.5 80.5 80.6 81.0

UCF
Base 70.5 84.7 87.1 – 87.4
New 77.5 56.1 78.8 – 76.8
HM 73.8 76.5 82.7 – 81.8

Base 69.3 82.7 84.3 – 87.2
New 74.2 63.2 76.1 – 75.7Avg Acc
HM 71.1 71.6 80.0 – 81.0

Table S-6. Comparison of base-to-new generalization to prior
methods. Bold: best results; underlined: second-best results.
∗Using synthetic image.

work [S-21]. Understanding why this occurs and how to
effectively leverage synthetic texts alongside synthetic im-
ages for CLIP adaptation remains a challenging problem for
future research.
Effect of TransBlock count of image adapter. In Ta-
ble S-7b, we assess the impact of varying the number of
TransBlocks in the visual adapter. Increasing the number
of TransBlocks from 2 to 4 enhances accuracy across most
datasets, resulting in an approximate 0.5% increase in aver-
age accuracy for both the 1-shot and 16-shot settings. How-
ever, further increasing to 6 TransBlocks does not yield
additional gains, suggesting a saturation in performance.
Therefore, we opt to use 4 TransBlocks in our visual adapter
throughout the experiments in this paper.



Adapter ImageNet Aircraft Flowers EuroSAT Avg Acc

Vision 71.6/74.7 31.5/54.8 87.0/98.7 76.2/89.6 66.6/79.5
Vision+Text 68.4/72.7 30.5/54.7 87.7/98.3 76.4/89.2 65.8/78.7

(a) Effect of text adapter.

Blocks Params ImageNet Aircraft Flowers EuroSAT Avg Acc

2 3.67M 71.5/74.6 30.1/54.0 87.0/98.6 75.7/89.0 66.1/79.1
4 7.34M 71.6/74.7 31.5/54.8 87.0/98.7 76.2/89.6 66.6/79.5
6 11.01M 71.6/74.6 31.2/55.8 86.6/98.8 76.0/89.1 66.4/79.6

(b) Number of blocks versus performance.

Normalization ImageNet Aircraft Flowers EuroSAT Avg Acc

✗ 71.4/74.5 30.8/55.3 85.7/98.8 75.3/87.3 65.8/79.0
✓ 71.6/74.7 31.5/54.8 87.0/98.7 76.2/89.6 66.6/79.5

(c) Impact of normalization for HoM.

Model Method ImageNet Aircraft Flowers EuroSAT Avg Acc

ViT-B/16
ImagineFSL 71.6/74.7 31.5/54.8 87.0/98.7 76.2/89.6 66.6/79.5
ImagineFSLLoRA 71.8/75.2 34.0/74.1 90.2/99.7 82.7/95.0 69.7/86.0

ViT-L/14

CoOp [S-17] 71.5/78.2 36.9/55.2 87.2/99.1 68.3/88.3 66.0/80.2
MaPLe [S-18] 76.5/78.4 37.4/46.3 83.6/97.4 61.2/85.4 64.7/76.9
ProGrad [S-19] 73.6/78.4 38.3/55.6 88.8/98.7 70.8/89.3 67.9/80.5
PLOT++ [S-20] 73.7/78.6 35.2/44.1 85.0/98.8 72.4/92.2 66.6/78.4

CLIP-Adapter [S-21] 74.6/76.4 32.9/46.4 79.5/97.3 60.1/75.8 61.8/74.0
Tip-Adapter(f) [S-22] 76.4/79.3 38.5/55.8 90.9/98.3 67.8/86.1 68.4/79.9
TaskRes [S-23] 76.2/78.1 39.7/55.0 87.6/97.8 70.6/84.3 68.5/78.8
ImagineFSL 78.4/80.7 42.1/68.1 90.0/99.5 80.6/92.7 72.8/85.3

CLIP-LoRA [S-14] 76.7/79.6 41.2/66.2 91.2/99.0 73.7/93.1 70.7/84.5
ImagineFSLLoRA 78.6/80.9 44.9/79.0 94.8/99.7 85.6/96.0 76.0/88.9

(d) Scaling of ImagineFSL and ImagineFSLLoRAmodel capacity.

Table S-7. Additional ablation and comparison in the 19shot/169shot settings. Bold: best results; underlined: second-best results.

How normalization affects HoM? In our HoM method,
we apply square root and cubic root transformations to the
second and third moments, respectively, to normalize them.
To evaluate the impact of this normalization, we compare
the performance with and without it. As shown in Table S-
7c, omitting normalization results in a performance drop of
0.8% in 1-shot accuracy and 0.5% in 16-shot accuracy on
average. This suggests that normalization plays a significant
role in enhancing the effectiveness of our HoM approach,
which is consistent with previous observation [S-9].
Further analysis on scaling model capacity. In Table
6f of the main paper, we study the scaling capability of
ImagineFSLLoRA from ViT-B/16 to ViT-L/14. Here, we re-
port additional results for ImagineFSL and compare to pre-
vious methods in Table S-7d. The results of the compet-
ing methods are from CLIP-LoRA [S-14]. We first note
that scaling from ViT-B/16 to ViT-L/14 leads to significant
performance improvements for our methods. Specifically,
ImagineFSL achieves gains of 6.2% and 5.8% in the 1-shot
and 16-shot settings, respectively, while ImagineFSLLoRA
shows gains of 6.3% and 2.9%. These results suggest
that our methods exhibit superior scaling capabilities as the
capacity of CLIP models increases. Furthermore, Imag-
ineFSL ranks as the runner-up across the board in terms
of average accuracy, performing better than the third-place
method on most individual datasets; ImagineFSLLoRA out-
performs all competitors by substantial margins, in terms of
both average accuracy and accuracy on individual datasets.

D.3. Complementarity to Existing Methods
To assess the generalization ability of our methodology,
we apply it to several state-of-the-art CLIP adaptation
methods: CoOp [S-17] (PT), CLIP-Adapter [S-21] (AT),
and DISEF [S-4] (ET). We pre-train these methods on
SyntIN1K and then fine-tune them using both task-specific
synthetic data and few-shot real images. The results are

Method Our
Methodology ImageNet Aircraft Flowers EuroSAT Avg Acc

CoOp ✗ 65.7/71.9 26.2/43.1 78.3/96.8 56.4/85.0 56.7/73.5
CoOp ✓ 70.1/72.6 26.4/46.1 83.2/96.6 67.7/86.0 61.8/75.3

CLIP-Adapter ✗ 67.9/69.8 25.2/34.2 71.3/92.9 49.3/71.4 53.4/67.1
CLIP-Adapter ✓ 68.9/71.4 30.2/71.0 76.4/95.4 62.7/87.3 59.6/73.8

DISEF ✗ 71.0/74.0 32.0/67.9 88.0/98.9 82.3/94.3 68.3/83.8
DISEF ✓ 71.2/74.1 33.5/68.9 89.6/99.3 82.7/94.7 68.9/84.3

Table S-8. Our methodology enhances state-of-the-art methods.

summarized in Table S-8. By integrating our methodology,
CoOp improves its performance by 5.1%/1.8% while CLIP-
Adapter improves by 6.2%/6.7% in 1-shot/16-shot settings,
respectively. Although DISEF already leverages synthetic
images to complement its few-shot data, our approach still
provides an additional 0.6%/0.5% improvement. These re-
sults underscore the broad applicability of our methodology
and its potential to enhance a variety of different methods.

D.4. Further Analysis on Synthesizing Captions and
Images

Are synthetic images as effective as real images? In Ta-
ble S-9a, we compare ImagineFSL pretrained on synthetic
versus real images. Specifically, we construct base sets con-
taining either 0.3M or 0.45M real images from ImageNet.
First, with 0.3M images, pretraining on real images yields
only marginal gains (0.1% and 0.7% for 1-shot and 16-shot)
over synthetic images. Despite the domain gap, models
pretrained on synthetic images achieve competitive perfor-
mance. Second, performance saturates for both synthetic
and real images when dataset size increases to 0.45M, in-
dicating saturation isn’t related to data diversity. Since Ta-
ble S-7b shows this saturation also isn’t due to adapter size,
we hypothesize it results from backbone capacity (see Table
6f of the main paper). These comparisons suggest synthetic



Base set Size ImageNet Aircraft Flowers EuroSAT Avg Acc

SyntIN1K
0.1M 71.1/74.4 31.0/54.8 87.0/98.8 74.8/88.1 66.0/79.0
0.3M 71.6/74.7 31.5/54.8 87.0/98.7 76.2/89.6 66.6/79.5

SyntIN1.5K 0.45M 71.7/74.7 32.9/54.7 87.7/98.6 75.2/89.7 66.9/79.4

ImageNet
0.3M 71.6/74.8 32.4/56.6 87.5/98.9 75.4/90.5 66.7/80.2
0.45M 72.1/74.6 32.0/56.2 87.3/99.0 75.0/90.6 66.6/80.1

(a) Comparsion of pretraining with synthetic versus real images.

M
eth

od LLMs ImageNet Aircraft Flowers EuroSAT Avg Acc

Im
ag

ine
FSL

GPT-4
+Llama3 8B

71.6/74.7 31.5/54.8 87.0/98.7 76.2/89.6 66.6/79.5

71.2/74.4 31.9/56.3 86.4/98.6 75.4/89.6 66.3/79.7

Im
ag

ine
-

FSL LoR
A Llama3.1 405B

+Llama3 8B
71.8/75.2 34.0/74.1 90.2/99.7 82.7/95.0 69.7/86.0

71.9/75.1 34.2/74.0 90.3/99.5 83.1/95.2 69.9/86.0

(b) Closed-source GPT-4 versus open-source Llama3.1 405B.

Table S-9. Further analysis on synthesizing captions and images.

images possess high fidelity and diversity, making them a
viable alternative to real images.
Replacing GPT-4 with Open-Source Llama 3.1 405B.
In our synthesizing pipeline, we use GPT-4 with CoT for
key factor analysis and exemplar caption generation. To
assess the generalization and adaptability of our pipeline,
we replace GPT-4 with the open-source Llama 3.1 405B
model [S-25] to regenerate captions and corresponding im-
ages. The results, summarized in Table S-9b, show that
ImagineFSL and ImagineFSLLoRA trained on images syn-
thesized using Llama 3.1 405B perform comparably to
those trained with GPT-4, indicating that our pipeline is not
limited to GPT-4. Furthermore, we anticipate that advance-
ments in open-source LLMs, such as Llama, Grok [S-26],
and DeepSeek [S-27], along with improvements in image-
to-text models like SD, will further enhance our pipeline.

D.5. Visualization

Visualization with and without pretraining. In Table 6a
of the main paper, we quantitatively compare the perfor-
mance between the non-pretraining and pretraining settings.
To understand how pretraining influences the models, we
visualize the self-attention maps obtained under different
settings. Following DINO [S-1], we extract features from
the final layer of the adapter and compute the self-attention
scores between the [CLS] token and the patch tokens. Fig-
ure S-3 presents these visualization results. We observe
that, as we progress from non-pretraining to SL pretrain-
ing and then to Self-SL pretraining, the model increasingly
focuses on the foreground objects, with reduced attention
to background distractions. This visualization supports the
conclusion made in the main paper, i.e., both SL pretrain-
ing and Self-SL pretraining are superior to non-pretraining.
Crucially, the Self-SL method (i.e., HoM-DINO) outper-

forms SL, more effectively learning discriminative features
transferable from synthetic to real image domains.

Distributions of features. As described in Section 3.1 of
the main paper, we prefer using statistical moments over
assuming a prior distribution (e.g., Gaussian) for model-
ing feature distributions. To illustrate the rationale behind
this, we visualize the feature distributions of input images.
Specifically, given an input image, we extract 512-dim fea-
tures from the last TransBlock and compute histogram for
each feature component (Comp). These histograms are then
fitted using Kernel Density Estimation (KDE) with a Gaus-
sian kernel and a bandwidth of 1.0 to provide a smooth es-
timate of the underlying distribution. Figure S-4 showcases
the histograms and KDE curves for two images. We ob-
serve that the distributions are complex and varied, exhibit-
ing unimodal or multimodal peaks. This complexity sug-
gests that assuming specifically a prior distribution may be
sub-optimal. Hence, we opt to use statistical moments for
distribution modeling, which is flexible in representing di-
verse distributions and can be learned in an end-to-end way.

Synthetic texts & images. Here, we provide quantitative
analyses of synthetic texts generated by LLMs and the cor-
responding images generated by SD3 across different pat-
terns. These analyses show that our generation pipeline can
generate diverse, contextually rich synthetic images.

We demonstrate this through an example for each of the
four patterns. Figure S-5a shows examples for the Base-
pattern. As seen from the top (resp. bottom) row in the
left-most panel, for the class ragdoll cat, the attribute of
fluffy ruff (resp. soft pink nose) and the viewpoint of profile
view (resp. front view) are synthesized in the texts and are
correctly interpreted by SD3. For the BG-pattern, as Fig-
ure S-5b (right-most panel) shows, the background of gas
station (resp. country road) are reflected for the class 1998
Eagle Talon Hatchback. For the LC-pattern, as seen in Fig-
ure S-5c (left-most panel), the lighting condition of foggy
light (resp. sunset) are clearly visible for the class campsite.
Lastly, for the CD-pattern, we can see from Figure S-5d
(right-most panel) that the cause of degradation, i.e., incor-
rect focus (resp. poor lighting), is highlighted for the class
ceiling fan. Our method can flexibly create concept-specific
attributes and backgrounds, provide appropriate viewpoints,
adjust lighting conditions, and introduce image degradation.

In addition, we showcase the synthetic images used for
domain generalization. Figure S-6a presents the generated
images for ImageNet-S. Examples are provided for six style
of sketches, including cross-hatching, ink sketch, line art,
cartoon sketch, pencil sketch, and charcoal sketch. For each
style, we provide two generated images and the accompa-
nying text prompts that are stacked vertically. The example
images generated for ImageNet-R are provided in Figure S-
6b. Examples of 12 rendition styles are shown, such as con-
temporary origami, plush toy, modern sculpture, origami



art installation. Notably, supported by these synthetic im-
ages, our methods establish new state-of-the-art accuracies
on both ImageNet-S and ImageNet-R.

E. Limitations and Future Research
Compared to existing works, our methods introduce non-
trivial computational overhead due to training on a large-
scale synthetic base set. However, since this pretraining
is task-agnostic and can be completed beforehand, it does
not affect the efficiency of downstream tasks. Once pre-
trained, our models are universally applicable to few-shot
recognition, domain generalization, zero-shot recognition,
and base-to-new generalization tasks.

Although our work mainly focuses on CLIP, the core
ideas and techniques–pretraining on purely synthetic im-
ages, distribution-based Self-SL, and a systematic, scalable
synthesizing pipeline–are model-agnostic and thus readily
applicable to other VLMs, such as CoCa [S-28]. Therefore,
ImagineFSL could potentially benefit from more powerful

visual encoders and enhanced cross-modal interactions. In-
vestigating our methods across diverse VLM models is a
promising direction for future research.

Additionally, although our synthesizing method gener-
ates caption-image pairs, our pretraining currently utilizes
only the images, as initial attempts to incorporate synthetic
captions provided no benefit. As discussed in Section D.2
and [S-3], effectively leveraging synthetic texts alongside
synthetic images could potentially further enhance CLIP
adaptation methods and is worth future investigation.

By using statistical moments as image representations,
our HoM-DINO shows clear improvement over existing
Self-SL methods in few-shot scenarios. Nevertheless, sta-
tistical moments cannot fully characterize feature distribu-
tions, which are complex and varied, as illustrated in Fig-
ure S-4. To our best knowledge, modeling the probabil-
ity distributions of deep features remains an open problem.
More advanced distribution modeling techniques could fur-
ther enhance the representational capabilities of neural net-
work models.



Real Images

No pretraining

SL pretraining

Self-SL (HoM-DINO) pretraining

Figure S-3. Self-attention maps in the settings of no pretraining, SL pretraining and Self-SL pretraining.
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Figure S-4. For each of the two images (left), we plot histograms and KDE curves for 10 randomly selected feature Components.



A 2012	BMW	1	Series	
Coupe	captured from a {rear 
view} angle, showcasing its 
{short overhangs} at rear.

2012	BMW	1	Series	Coupe	
{front view} featuring {angled 
headlights} with corona rings.

A ragdoll cat with a {fluffy
ruff} around its neck, captured
in a {profile view}, looking
regal and adorable

A ragdoll catwith a {so�
pink nose}, shot in a slightly
elevated {front view},
showing its adorable face.

A {long shot} of an abbey’s 
{monas�c cells}, with rows 
of simple yet elegant stone 
buildings, set amidst rolling
hills and distant mountains.

A stunning abbeywith its 
majes�c transepts, captured
in a {�lted view},
highligh�ng the intricate 
stone carvings and {stained 
glass windows}.

(a) Base-pattern.

A leonbergerwith long, 
feathered legs stands in a 
{backyard}, photographed 
from a profile view.

Leonbergerwith a slightly
arched neck, captured from 
a slightly elevated front view, 
res�ng on a {couch}.

A side view of poutinewith 
dark, rich gravy, set against 
a {bustling street food stall}.

A front view of a plate of 
poutinewith crispy golden 
fries, set on a {clean and 
modern kitchen counter}.

2012	BMW	1	Series	
Coupe	with a wide, low 
stance, captured in a 
front view, driving down a
winding {country road}.

2012	BMW	1	Series	Coupe	
with a wide, low stance, 
captured from the side at a 
busy {gas sta�on}.

(b) BG-pattern.

A back view of an 
apartment buildingwith
mul�ple floors, as the {blue
hour} casts a warm glow.

A campsite with outdoor 
cooking equipment in a 
three-quarter view,
captured in {foggy light}.

A campsitewith a folding 
table, captured in a 
panoramic view at {sunset}, 
surrounded by nature.

Oblique angle shot of an 
apartment buildingwith 
external ligh�ng fixtures
in so� {evening light}.

A driveway entrance, 
captured from an 
extreme long shot with
{bright overhead ligh�ng}.

A driveway with no 
sidewalks, seen from the 
rear, in the {hazy sunlight}.

(c) LC-pattern.

Close-up shot of a ceiling	
fan, captured in {poor 
ligh�ng}, highligh�ng its
blades and motor in a 
dark atmosphere.

2012	Toyota	Camry	Sedan	
with chrome trim accent 
around window from side
view with {mo�on blur}.

Close-up shot of the motor
housing of a ceiling fan, 
captured with {incorrect 
focus}, resul�ng in a blurry 
image.

A 2012	Toyota	Camry	Sedan	
with hatchback, shot in a 
three-quarter rear view, 
obscured by a heavy fog, 
showcasing the {poor
weather condi�on}.

A merry-go-round on a 
playground, captured in a 
three-quarter rear view, with
visible {color distor�on}.

Extreme long shot of a
playgroundwith playhouses,
{low resolu�on} causing
pixela�on.

(d) CD-pattern.

Figure S-5. Example synthetic images for the four patterns. We highlight the concept, and the factors including attributes, viewpoints,
backgrounds, lighting conditions and causes of degradation.



Black and white {ink sketch}, 
a photo of a tiger	shark.

Black and white {cross-
hatching}, a photo of a
bramblingwith white 
background.

Black and white {cartoon 
sketch}, a photo of a 
backpackwith white 
background.

Black and white {pencil 
sketch}, a photo of a volcano
with white background.

Black and white {cross-
hatching}, a photo of a hen
with white background.

Black and white {cartoon
sketch}, a photo of a mud
turtle.

Black and white {ink sketch}, 
a photo of a cockatoowith
white background.

Black and white {pencil
sketch}, a photo of a koala
with white background.

Black and white {charcoal 
sketch}, a photo of a 
small white butter�ly.

Black and white {line art}, 
a photo of a Maltesewith
white background.

Black and white {line art}, 
a photo of a duck.

Black and white
{charcoal sketch}, a
photo of a palace.

(a) Generated sketch images.

{Contemporary origami}, 
a photo of a snail.

{Hand-drawn cartoon}, a 
photo of a jelly�ish.

{Collec�ble Figurine}, a 
photo of a pelican.

{Anime cartoon}, a
photo of a dalmatian.

{Impressionism pain�ng}, a 
photo of a bell	pepper.

{Machine embroidery}, a 
photo of a banana.

{Morden embroidery}, a
photo of a lighthouse.

{Plush toy}, a photo of
of a pineapple.

{Origami art installa�on}, a 
photo of a lion with a park 
featuring trees.

{Modern sculpture}, a
photo of a harp.

{Modernist sculpture}, a 
photo of a snow	leopard	
with a rocky slope.

{Realism pain�ng}, a photo 
of a great	white	sharkwith 
a school of fish.

(b) Generated rendition images.

Figure S-6. Example synthetic images for ImageNet-S (a) and ImageNet-R (b). The individual styles of rendition or sketch are highlighted.
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