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In our supplementary material, we provide the following details and experiments:
• Sec. A: We provide experimental results on more datasets.
• Sec. B: We provide some additional discussion.
• Sec. C: We provide more implementation details.
• Sec. D: We provide more details about Video LVLM.

A. More Datasets
Some academic-task-oriented and instruction-following benchmarks are collected for evaluating the LVLM. For academic-
task-oriented benchmarks, VQA-v2 [5] and GQA [7] assess the visual perception capabilities of models through open-ended
short answers. VizWiz [6] evaluates the zero-shot generalization of models on visual questions asked by visually impaired
people. ScienceQA [14], a multiple-choice benchmark, evaluates the zero-shot generalization of models on scientific question
answering. TextVQA [15] focuses on text-rich visual question answering tasks.

For instruction-following benchmarks, POPE [10] evaluates the degree of hallucination in model responses on three sam-
pled subsets of COCO [12]: Random, Common, and Adversarial. MME [2] assesses the visual perception of models with
yes/no questions. MMBench [13] evaluates the robustness of model answers with all-round shuffling on multiple choice
answers. MM-Vet [18] evaluates the model capabilities in engaging in visual conversations on a diverse range of tasks and
evaluates the correctness and helpfulness of the responses using the GPT-4 evaluation framework.

As shown in Table A, we verify the effectiveness of Libra-Merging on 10 image-text benchmarks. For LLaVA-NeXT-8B,
47% Flops achieves a 0.2% average performance increase than 100% Flops by employing Libra-Merging.

B. Additional Discussion
B.1. Libra-Merging without Hierarchical Merging

Hierarchical Merging is not a core component of Libra-Merging. Thus, we remove it and conduct comparisons with existing
methods to further demonstrate the superiority of Libra-Merging. As shown in Tab. B, experimental results consistently
validate the effectiveness of Libra-Merging.

B.2. Extension to Qwen2-VL

To verify the generalizability of the findings, we extend Libra-Merging to Qwen2-VL. Qwen2-VL uses the naive dynamic
resolution and multimodal rotary position embedding (M-RoPE), which is significantly different from the visual encoding of
the LLaVA series models. As shown in the Tab. C, we report the experimental results on Qwen2-VL, which demonstrate the
effectiveness of Libra-Merging across diverse model architectures.
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Table A. LVLMs (image-text models) with different token compression methods on six benchmarks. We conduct experiments on three
different LVLMs to verify the scalability of our method across different model sizes (7b vs. 13b) and visual token count (llava-1.5 vs.
llava-next). Main evaluation Benchmarks include VQAv2 [4]; GQA [7]; VisWiz [6]; SQAI: ScienceQA-IMG [14]; VQAT: TextVQA [16];
POPE [9]; MME [2]; MMB: MMBench [13]; MM-Vet [17]. The Flops ratio 47% (37%) corresponds to compression ratio 50% (67%). T
means trillion. We calculate the average performance across all datasets except for MME, naming it “Avg”.

Model Flops (T) Ratio VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MMBCN MM-Vet Avg

LLaVA-1.5-7B

vanilla 3.82 100% 78.5 62.0 50.0 69.5 58.2 85.9 1512.0 64.7 58.2 31.1 62.0
FastV 2.13 56% 77.7 60.4 50.8 68.8 57.6 83.2 1511.7 64.2 58.0 31.8 61.4
Turbo 2.13 56% 77.8 61.6 50.7 68.7 57.4 85.8 1471.7 63.7 57.5 29.9 61.5

Libra-Merging 1.78 47% 78.0 61.3 50.7 68.9 57.4 84.7 1502.5 64.3 58.5 31.5 61.7

LLaVA-1.5-13B

vanilla 7.44 100% 80.0 63.2 53.6 72.8 61.2 85.9 1531.3 68.5 63.6 36.1 65.0
FastV 4.06 55% 79.5 62.7 54.2 73.0 60.8 85.4 1549.8 68.3 63.5 33.5 64.5
Turbo 4.06 55% 79.5 62.8 54.4 72.7 60.7 86.1 1561.0 68.1 63.2 33.3 64.5

Libra-Merging 3.47 47% 79.9 63.3 54.3 73.1 61.1 86.0 1531.1 68.4 63.7 33.8 64.8

LLaVA-NeXT-8B

vanilla 17.17 100% 82.8 65.9 52.5 77.3 69.8 86.2 1552.1 74.4 70.4 43.4 69.2
FastV 9.36 55% 83.0 65.5 52.0 77.2 69.5 86.8 1572.6 74.5 70.6 43.1 69.1
Turbo 9.36 55% 82.5 64.7 51.7 77.7 65.0 86.6 1505.3 73.4 69.1 43.0 68.2

Libra-Merging 7.86 47% 83.0 65.7 52.4 77.6 69.7 86.9 1565.8 74.7 70.8 43.6 69.4

Table B. We remove the non-core component Hierarchical Merging and conduct fresh comparisons between Libra-Merging and existing
methods. We prune 50% or 80% of visual tokens after Layer 3 during the compression process.

Model Layer R GQA SQAI MME MMB MMBCN TextVQA Avg

LLaVA-1.5-7B - - 62.0 69.5 1512.0 64.7 58.2 58.2 62.5
+FastV 3 50% 60.4 68.8 1511.7 64.2 58.0 57.6 61.8
+Libra-Merging (no hier.) 3 50% 61.4 69.5 1513.1 64.3 58.6 57.3 62.2

+FastV 3 80% 56.6 69.0 1427.6 62.8 56.7 55.6 60.1
+Libra-Merging (no hier.) 3 80% 58.8 69.2 1440.0 62.5 57.4 55.6 60.7

Table C. Experimental results on Qwen2-VL. The visual encoding of Qwen2-VL significantly differ from that of LLaVA, so Qwen2-VL is
suitable to be used for verifying the effectiveness of Libra-Merging across diverse model architectures.

Model Layer R Nocaps Flickr30k GQA POPE MME Avg

Qwen2-VL-7B - - 102.6 77.4 62.4 87.8 1683.6 82.5

+FastV 3 50% 102.8 76.7 60.5 86.8 1654.9 81.7
+Libra-Merging 3 50% 102.9 76.4 61.9 86.9 1690.3 81.9

+FastV 3 80% 98.8 69.0 55.0 81.8 1549.9 76.1
+Libra-Merging 3 80% 102.4 71.0 58.7 85.2 1650.1 79.3

B.3. Extension to Training

With flash-attention compatibility, we can extend token compression techniques to model training. Specifically, we conduct
two novel technical improvements.

Firstly, we design a hybrid attention mechanism to replace flash-attention. Flash-attention is indispensable for accelerating
attention computation, yet it does not output attention scores. Fortunately, our main goal is to preserve response-related visual
information, which only requires attention scores between output token and visual tokens. Consequently, we compute only
these attention scores, requiring merely 1×Nt score computations. Since FLOPs scale quadratically with token length, this
introduces approximately 1

Nt
additional FLOPs, which becomes negligible when Nt≫1.

The second challenge faced in compressing tokens during training is the training instability, leading to a noticeable per-



Table D. LVLMs (video-text models) with token compression on Video-MME during training. We compress 30% visual tokens at layer
{4, 10, 16, 22}. “GPU Hours” means the total time needed for finishing the training.

Model R GPU Hours Overall Short Medium Long
w/o subs w subs w/o subs w subs w/o subs w subs w/o subs w subs

VideoLLaMA-2 (7B) vanilla 0% 391.2 49.8 54.7 58.0 63.6 47.0 53.1 44.3 47.3
Libra-Merging 30% 168.1 50.1 54.4 58.4 63.4 48.4 52.7 43.4 47.2

Table E. Study about hyper-parameter sensitivity. Settings for results in Table A are highlighted in grey . The compression ratio R is
set to 67% and we compress tokens at layer {7, 15, 23}.

(a) The threshold for dividing tokens.

τ GQA SQAI MME MMB MMBCN Avg

0.3 59.2 69.5 1491.6 63.6 58.1 62.6
0.5 60.2 69.4 1483.2 63.7 57.9 62.8
0.7 60.7 69.2 1480.1 63.9 58.2 63.0
0.9 59.1 69.3 1481.3 63.7 57.8 62.5

(b) The temperature coefficient.

η GQA SQAI MME MMB MMBCN Avg

1e-3 59.1 69.6 1493.1 63.7 57.7 62.5
1e-4 59.2 69.5 1492.4 63.7 57.8 62.6
1e-5 59.1 69.6 1489.0 63.7 57.9 62.6

mean(α) 60.7 69.2 1480.1 63.9 58.2 63.0

formance drop. To solve this issue, we design a linear compression ratio reduction scheme at the end stage of training. Given
the compression ratio R, we start reducing the compression ratio from 4500 and end at 5500, with the compression ratio
being 5500−i

1000 ·R for the iteration i.
We validate our training token compression scheme on the state-of-the-art VideoLLaMA-2 [1]. As shown in Table D,

Libra-Merging maintains a competitive performance while reducing the GPU hours from 391.2 to 168.1.

B.4. Hyper-parameter Sensitivity

We conduct the sensitivity study of Libra-Merging in Table E for two main hyper-parameters, the threshold τ for dividing
non-target tokens and the temperature coefficient η for obtaining merging weights. First, when the highest similarity between
a token and target tokens smax > τ , it is grouped into the positive set to merge in target tokens directly; otherwise, it is
grouped into the negative set to generate an information compensation token. We discuss different thresholds for dividing
tokens: τ ∈ {0.3, 0.5, 0.7, 0.9}. Second, we discuss different temperature coefficients η ∈ {1e-3, 1e-4, 1e-5,mean(α)},
where mean(α) indicates that the temperature coefficient is the average of output attention of all tokens. As shown in
Table E, we find: (i) Libra-Merging is relatively robust to different thresholds τ and temperature coefficients η. (ii) When τ
= 0.7, the average performance is the best. When η = mean(α), the average performance is the best.

B.5. Ablation about Information Compensation Token

We position Information Compensation Token at the sequence end for implementation simplicity, and Information Compen-
sation Token can be placed at any location theoretically. As shown in the Tab. F (vbeginc for front-placed Information Compen-
sation Token), Information Compensation Token works, while vbeginc shows no gains. Then, since FLOPs scale quadratically
with token length, adding one token to Nt tokens introduce approximately 2Nt+1

N2
t

≈ 2
Nt

additional FLOPs, which becomes
negligible when Nt≫1.

B.6. Visualization

Visualization is helpful for understanding how the model compresses tokens. We follow Turbo to conduct the visualization.
Specifically, we locate the position of each visual token in the image. If tokens are merged, these tokens are represented by
the same color patch, while different tokens are represented by different color patches. As shown in Figure A, Turbo can
merge response-related tokens and background tokens. Compared to Turbo, Libra-Merging keeps response-related tokens
better (e.g., “monitor” or “umbrella” tokens), thus having more accurate responses.



Table F. The ablation about Information Compensation Token. Information Compensation Token can bring a slight performance increase.
Besides, the position of Information Compensation Token is not important.

Model Layer R GQA SQAI MME MMB MMBCN TextVQA Avg

LLaVA-1.5-7B - - 62.0 69.5 1512.0 64.7 58.2 58.2 62.5
+Libra-Merging 3 50% 61.4 69.5 1513.1 64.3 58.6 57.3 62.2
+Libra-Merging w/o vc 3 50% 61.3 69.3 1512.3 64.3 58.5 57.3 62.1
+Libra-Merging w vbeginc 3 50% 61.3 69.5 1512.7 64.3 58.5 57.3 62.2

Turbo Libra-merging
Is the large monitor to the right or to the left of the white thing that 
is on top of the desk? Turbo: Right. × Libra-merging: Left. √

Are there umbrellas to the left of the person that is to the left of 
the palm? Turbo: No. ×Libra-merging: Yes. √

Turbo Libra-merging

Figure A. Visualization samples about token merging. Libra-Merging keeps response-related tokens better (e.g., “monitor” or “umbrella”
tokens), thus having more accurate responses.

C. Implementation Details
FastV: First, we compute the output attention of each token as its importance metric. Then, we rank all visual tokens based
on their importance metrics at layer K (K=3 in this paper). We keep the most important R% (R=50 in this paper) of visual
tokens and discard the remaining visual tokens.
Turbo: First, we compute the output attention of each token as its importance metric. We also compute the redundancy r of
each token as:

ri = Max{S(vi, vj), j ∈ {1, ..., N}\i}, (1)

where S(·, ·) refers to cosine similarity, and Max is the maximum operation. The information degree of a token is r−w · α,
where α is the output attention of each visual token. We follow Turbo [8] to set w=6.0. Then, we rank all visual tokens
based on their information degree at layer K (K=3 in this paper). We name visual tokens having the highest R% (R=50
in this paper) information degree as non-target tokens and name the remaining visual tokens as target tokens. We averagely
merge non-target tokens into their most similar target tokens. A little difference to Turbo [8] is that Turbo uses bipartite soft
matching, which divides visual tokens into two partitions B and C of the same size; for each token in partition B, Turbo [8]
keeps the highest cosine similarity concerning partition C as its redundancy; Turbo [8] sorts the information degree of B
and merge the top R% tokens into C, by averaging merging the R% tokens in B into the corresponding tokens in C with the
highest cosine similarity. The bipartite soft matching is faster but may fail to find the most similar token of a token, so we
use greedy matching in this paper.
Libra-Merging: First, we compute the output attention of each token as its importance metric. Then, we split the visual token
sequence into different intervals and select the most important tokens from each interval as target tokens. The remaining
tokens serve as non-target tokens. We divide non-target tokens into positive set and negative set based on their similarities
with target tokens. Then, we merge non-target tokens of positive set into target tokens. We condense non-target tokens of
negative set into an information compensate token. All merging weights are generated from token importance; when a token
is more important, it should have a higher merging weight.

D. Details about Video LVLM
VideoLLaMA-2 (7B) [11] is a state-of-the-art video LVLM model. Similar to LLaVA, it converts visual information into
visual tokens and feeds these visual tokens into an LLM. The total layer number is 28 in VideoLLaMA-2 (7B). During



inference, we compress 75% visual tokens at layer 3 for FastV, Turbo, and Libra-Merging. During training, we compress
30% visual tokens at layers {4, 10, 16, 22}. We find that compressing too many visual tokens may lead to training instability.
In each layer of VideoLLaMA-2 (7B), the attention layer consists of two linear layers with the size 3584 × 3584 and two
linear layers with the size 3584× 512. The FFN layer consists of a gate linear layer with the size 3584× 18944, an up linear
layer with the size 3584× 18944, and a down linear layer with the size 18944× 3584.
Video-MME [3] integrates video types from 30 fields, varied durations from 11 seconds to 1 hour, with multi-modal data and
high-quality annotations. It includes 900 videos (254 hours) and 2,700 annotated question-answer pairs.
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