
MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling

Supplementary Material

6. Appendix
6.1. Additional Implementation Details

Table 5. Hyper-parameter settings for MMAR models

MMAR-0.5B MMAR-7BModule Param. settings settings

Ndiff 8 12
dmlp 1024 2048Diffusion MLP
rmlp 4 4

Res. 256 256Image Tonkenizer d 16 16

NV iT 16 16EmbeddingViT dV iT 1024 1024

r 512 1280LLM’s PLoRA α 128 128

Diffusion MLP. Inspired by MAR, we employ a simple
MLP architecture to predict v(t), whose detailed architec-
ture is shown in Fig. 6. It consists of a main network and its
input/output linear projection layers. The input projection
converts the d-dimensional noisy latent x(t) into the mlp
hidden dimension dmlp, while the output projection con-
verts the dmlp-dimensional main network output back to d
dimensions. The main network is a stack of Ndiff resid-
ual blocks, each comprising an AdaLN [42], followed by a
two-layer MLP activated by SiLU. The expand ratio of each
MLP is denoted by rmlp, which means its first linear layer
projects from dmlp to the dimension of dmlp × rmlp. The
condition vector z is added to the diffusion time embedding
and is incorporated through AdaLN. In practice, rmlp is set
to 4. For MMAR-0.5B,Ndiff = 8 and dmlp = 1024, while
for MMAR-7B, Ndiff = 12 and dmlp = 2048.

Image Tokenizer. MMAR employs the publicly available
KL-16 image tokenizer from LDM [47]. This tokenizer pro-
cesses an 256 × 256 image into 256 image tokens, each
with d = 16 channels, and it is kept frozen during training.

EmbeddingViT. The EmbeddingViT module is imple-
mented with a ViT[11] encoder with NV iT = 16 layers
and dV iT = 1024 hidden state channels, processing image
tokens into visual embeddings with stronger context aware-
ness. We integrate a learnable position embedding for each
image token in EmbeddingViT, corresponding to its 2D po-
sition on the image.

LLM. We initialize our LLM using parameters from the
open-source QWen2 series models [63]. To preserve text
modeling capabilities, we keep the LLM parameters fixed

A
daLN

SiLU

Linear

Linear

×𝑁!"##𝑧, 𝑡

In-Proj

O
ut-Proj

𝑥(") 𝑣(")

Figure 6. Details of Diffusion MLP architecture.

during training and add PLoRA [10] as the image expert,
where only the image tokens in the input pass through the
introduced LoRA [22] adapters. The PLoRA is applied
for each linear layer within the original LLM. Consider-
ing the time cost, our ablation study employs QWen2-0.5B-
Instruct, with r = 512 and α = 128 for PLoRA. Further-
more, we use QWen2-7B-Instruct to explore our method’s
scale-up capability with r = 1280 and α = 128 for PLoRA.
The corresponding MMAR models are denoted by MMAR-
0.5B and MMAR-7B, respectively.

Projector. We use two MLP-based projectors [67–69] to
connect different modules’ input and output. Specifically,
the PostProjector connects the Image Tokenizer output to
the EmbeddingViT’s input with a 2-layer MLP, whereas the
VisProjector connects EmbeddingViT output to the LLM’s
input with a 3-layer MLP.

Training Task Proportion. MMAR models P (I|T),
P (T |I) and P (I) through the conditional image genera-
tion task, the image understanding task and the uncondi-
tional image generation task, respectively. Through the first
and the second stage training, we set the proportion of these
three tasks as 50%, 45%, and 5%, respectively. During the
optional third training stage, only image generation tasks
are applied, and the proportion of the conditional and un-
conditional image generation tasks are set to 90% and 10%,
respectively.

Mixed-Precision Inference. To enhance numerical sta-
bility during image generation, particularly when using
small step sizes in the DDPM sampling process, we per-
form the model’s forward pass in bfloat16 (matching
the training precision) but cast the output to float32 be-
fore DDPM sampling. This mitigates potential rounding er-
ror without significant computational overhead, improving
sampling accuracy efficiently.

Ablation-VQ. Based on the MMAR-0.5B framework, we
replace the Image Tokenizer from LDM-KL-16 to LDM-

VQ-16. The image codes extracted using LDM-VQ-16 are
then passed through a projector to increase the channel size
to match the LLM’s hidden size. Subsequently, we add
a decoding Linear layer, which takes the hidden states of
the LLM’s output image portion as input and maps them to
the image codebook. The Cross Entropy loss is then cal-
culated between these mapped values and the ground-truth
VQ codes.

Transfusion Reimplementation. Our re-implementation
version of Transfusion shares most of the MMAR-0.5B’s
model architecture except for the processing of the model
input and output. Following the Transfusion paper, we
adopt a input linear projection to convert the output of
LDM-KL-16 image tokenizer into the LLM input represen-
tation, and use an output linear projection to convert the
LLM output into the predicted noise. Noise of different lev-
els are added to the image token input according to differ-
ent pretraining tasks. For the image-to-text task, the dif-
fusion time step is uniformly sampled within t ∈ [0, 500],
while for the text-to-image task, the diffusion time step is
uniformly sampled within t ∈ [0, 1000]. A learnable time
embedding corresponding to the time step t is added after
the input linear projection. MSE loss is calculated between
the predicted and ground-truth noise. During inference, we
treat the LLM as a diffusion model, with the condition be-
ing the concatenation of the text and the noisy image tokens
of the previous diffusion time step t+ 1.

6.2. Minimizing the Numerical Error in Diffusion
Models

To make our discussion clearer, we switch the diffusion
noise schedule into an angular form as follows:{

sinϕt =
√
1− ᾱt,

cosϕt =
√
ᾱt.

(9)

In this way, the forward diffusion process can be written as
follows:

x(t) =
√
ᾱtx+

√
1− ᾱtϵ = cosϕtx+ sinϕtϵ, (10)

where x(t), x and ϵ are noised image latent, original image
latent and gaussian noise, respectively.

Our goal is to minimize the numerical error term in the
DDIM sampling process. However, the form of DDIM sam-
pling process is different under different parameterization
method of the diffusion model. Therefore, we need to first
define a general form to represent the diffusion model pa-
rameterization.

We consider the diffusion model output u(t)θ predict a
linear combination of data x and noise ϵ, i.e. u(t) = atx +
btϵ. Note that the coefficients can vary according to the

diffusion time step t. Further re-writing the coefficients in
the angular form gives:

u(t) = rt cosψtx+ rt sinψtϵ, (11)

where rt =
√
a2t + b2t represents the scale of u(t). cosψt

and sinψt balance the proportion of x and ϵ. Combining
Eq.10 and Eq.11, we can in turn represent x and ϵ with u(t)

and x(t):x = sinψtx
(t)−sinϕtu

(t)/rt
cosϕt sinψt−cosψt sinϕt

= sinψtx
(t)−sinϕtu

(t)/rt
sin(ψt−ϕt)

,

ϵ = cosψtx
(t)−cosϕtu

(t)/rt
sinϕt cosψt−sinψt cosϕt

= − cosψtx
(t)−cosϕtu

(t)/rt
sin(ψt−ϕt)

.

(12)
Now we consider the general form of DDIM sampling
step [51]:

x(t−1) = cosϕt−1x̂θ(x
(t)) + sinϕt−1ϵ̂θ(x

(t)), (13)

where x̂θ(x(t)) and ϵ̂θ(x(t)) are the estimated image latent
and noise, respectively.

Note that by using Eq.12, both of x̂θ(x(t)) and ϵ̂θ(x(t))
can be derived from the noisy image latent x(t) and the dif-
fusion model output u(t)θ . Therefore, we can further repre-
sent x(t−1) in the following form:

x(t−1) =cosϕt−1
sinψtx

(t) − sinϕtu
(t)
θ /rt

sin(ψt − ϕt)

− sinϕt−1
cosψtx

(t) − cosϕtu
(t)
θ /rt

sin(ψt − ϕt)

=
sin(ϕt−1 − ϕt)u

(t)
θ /rt − sin(ϕt−1 − ψt)x

(t)

sin(ψt − ϕt)
.

(14)

Eq.14 represents the general form of DDIM sampling step
under any kind of diffusion model parameterization in the
form of Eq.11. To help understanding, we further present
the geometric meaning of Eq.14. As shown in Fig.7, term
x(t−1), x(t), and u(t)θ /rt all locate on the unit circle in the
x − ϵ plain. We find that Eq.14 can be interpreted as pro-

jecting x(t−1) onto the (x(t),
u
(t)
θ

rt
) coordinate system. We

illustrate this projection by adding auxiliary line AB and
AC. By solving the sine law of △OBA given OA = 1, we
get: {

OB = sin(∆ϕ)
sin(ψt−ϕt)

BA = − sin(ϕt−1−ψt)
sin(ψt−ϕt)

(15)

By representing x(t−1) = OB ·u(t)θ /rt+AB ·x(t), we get:

x(t−1) =
sin(∆ϕ)

sin(ψt − ϕt)
u
(t)
θ /rt −

sin(ϕt−1 − ψt)

sin(ψt − ϕt)
x(t),

(16)
which aligns with Eq.14 given that ∆ϕ = ϕt−1 − ϕt.

𝑥(") = cos𝜙"𝑥 + sin𝜙"𝜖

𝑥("$%) = cos𝜙"$% +𝑥& + sin𝜙"$% ̂𝜖&

−Δ𝜙

𝜙!−
𝜓!

'!
"

("
 (predicts cos𝜓"𝑥 + sin𝜓"𝜖)

𝜙 !"
#
− 𝜓

!

𝜙!−
𝜓!

−Δ𝜙

𝐵 𝐶

ϵ

𝑥

𝑂

𝐴

𝐴𝐵
sin 𝜙"$% − 𝜓"

=
𝑂𝐵

sin −Δ𝜙
=

𝑂𝐴
sin 𝜙" − 𝜓"

Sine law of Δ𝑂𝐵𝐴:

Figure 7. Geometric interpretation of a DDIM sampling step under
arbitrary diffusion model parameterization.

Now, we take the numerical error into consideration by
multiplying the model output by a factor 1 + δ, where δ
represents the relative error:

x̃(t−1) =
sin(ϕt−1 − ϕt)(1 + δ)u

(t)
θ /rt − sin(ϕt−1 − ψt)x

(t)

sin(ψt − ϕt)
.

(17)
Further, we can isolate the numerical error term from the
ideal DDIM sampling step:

x̃(t−1) = x(t−1) + sin(ϕt−1 − ϕt)
u
(t)
θ /rt

sin(ψt − ϕt)
δ. (18)

From Eq.18, we conclude that the numerical error of a
DDIM sampling step is determined by four factors, namely,
the step size ∆ϕ = ϕt−1 − ϕt, the normalized model
output u(t)θ /rt, the relative error of the data type δ, and
sin(ψt − ϕt), which is decided by the parameterization of
the diffusion model.

Notably, not all these four factors are useful to achieve
the goal of minimizing the numerical error. For example,
tuning down the step size only decreases the numerical er-
ror of each step. As a result, the total step number of DDIM
sampling is increased proportionally, which cancels out the
effect of error reduction of each single step. The factor
u
(t)
θ /rt, which represents the normalized model prediction,

is largely decided by the optimization progress and the tar-
get data distribution. An approximation can be derived from
a perfect prediction, that is u(t)θ /rt = u(t)/rt. In this way,

E[(u(t)θ /rt)
2] ≈ E[(cosψtx+ sinψtϵ)

2]

= cos2 ψtE[x2] + sin2 ψt. (19)

In common practice, image tokens x are normalized
into unit standard deviation, leading to E[(u(t)θ /rt)

2] ≈
cos2 ψt + sin2 ψt = 1. This is a constant number, meaning
that there is not much potential to reduce the total numerical
error via tuning down u(t)θ /rt.

If we decide to scale up our model, it is better to leverage
the pre-trained LLMs as well as the highly efficient training

infrastructure that is specifically optimized for LLMs. This
makes bfloat16 almost the only choice. As a result, the
relative error δ is fixed to 1/128.

Now, our only choice is to adjust the diffusion model pa-
rameterization method, so that | sin(ψt−ϕt)| is maximized.
A simple solution is to set ψt − ϕt = π/2, resulting in the
following parameterization:

u(t) = rt cos(ϕt + π/2)x+ rt sin(ϕt + π/2)ϵ

= rt(cosϕtϵ− sinϕtx). (20)

Note that rt is still undetermined, which reflects the scale of
u(t). From the analysis above, rt does not affect the numer-
ical error term, since it is canceled out by the normalization
of the model output, as seen in the factor u(t)θ /rt. Therefore,
rt can be chosen freely, or based on other considerations.
We consider that the smooth optimization of a neural net-
work often requires the activation and output not too large
or small. Therefore, we require a unit standard deviation for
u(t), making rt = 1 constantly.

The final parameterization of our diffusion model is as
follows:

u(t) = cosϕtϵ− sinϕtx. (21)

We notice that this parameterization is coincidentally the
“v-prediction” parameterization [49]. Note that, however,
“v-prediction” is initially proposed for the efficient distilla-
tion of diffusion models, rather than reducing the numerical
error of diffusion models. To the best of our knowledge, our
work is the first to derive “v-prediction” parameterization
from the first principle of minimizing the numerical error in
diffusion models.

6.3. Deriving Theoretical Numerical Error for ϵ-
Prediction Models

The ϵ-prediction parameterization corresponds to ψt = π
2

in the angular parameterization form given by Eq.11. Sub-
stituting ψt = π

2 and u(t)θ /rt = ϵθ into Eq.18, we get:

x̃(t−1) = x(t−1) + sin(ϕt−1 − ϕt)
ϵθ

cos(ϕt)
δ. (22)

Further, we cancel out the step size factor sin(ϕt−1 − ϕt)
within the numerical error term, only focusing on “the nu-
merical error introduced per unit DDIM step”:

e(t) =
ϵθ

cosϕt
δ. (23)

Next, we will show that e(t) can also be interpreted as the
equivalent v-prediction numerical error for an ϵ-prediction
model.

For an ϵ-prediction model, u(t)θ = ϵθ. In order to calcu-
late the equivalent v(t)θ value, we need to represent v(t)θ with

Table 6. Detailed visual understanding evaluation results.
MMAR-0.5B MMAR-0.5B MMAR-7BBenchmark Chameleon-7B Transfusion* Show-o MMAR-0.5B w/ ϵ-pred. w/ VQ MMAR-7B w/ Stg3

AI2D [24] 34.81 40.22 32.48 43.43 41.90 41.90 64.64 63.54
ChartQA [40] 3.84 9.56 11.32 10.20 10.36 9.36 13.64 12.52
DocVQA [41] 1.51 6.72 18.24 7.62 6.77 6.79 11.12 10.62
Hallu.Bench [18] 39.01 41.54 40.90 42.80 41.11 41.54 53.10 52.05
MathVista [39] 21.90 22.60 23.20 21.60 23.10 22.90 32.40 31.30
MMBenchCN [35] 10.14 27.23 0.52 43.99 38.83 31.87 70.53 66.75
MMBenchEN [35] 13.32 29.47 42.44 48.45 45.53 37.54 70.45 67.78
MMEP [15] 125.8 594.3 1182.7 882.1 880.7 618.2 1486.9 1421.9
MMEC [15] 33.9 206.1 225.0 256.8 232.1 273.2 268.9 303.6
MMMU [66] 24.00 29.33 26.44 29.33 25.33 29.67 41.33 47.33
MMStar [5] 20.47 28.13 32.00 32.13 31.07 28.07 41.87 40.87
MMVet [65] 7.34 13.90 20.87 18.49 17.98 14.45 30.64 29.17
OCRBench [36] 0.50 2.30 15.20 18.70 7.10 2.10 25.80 21.20
POPE [31] 30.86 66.90 84.50 70.74 71.14 66.98 84.02 83.21
RealWorldQA 27.06 36.99 27.97 38.30 35.16 36.60 53.59 52.68
ScienceQA [38] 44.83 45.92 41.82 47.54 45.21 45.35 74.39 73.20
SEEDBench [26] 34.61 42.40 51.61 55.70 53.72 44.93 68.63 66.59
TextVQA [50] 5.43 9.94 38.35 16.77 12.40 9.46 24.37 21.35

Average 18.34 28.26 33.06 34.56 32.21 29.70 48.25 47.18

the predicted ϵθ and the known x(t), which is calculated as
follows:

v
(t)
θ = cosϕtϵθ − sinϕtx̂θ(x

(t))

= cosϕtϵθ − sinϕt
x(t) − sinϕtϵθ

cosϕt

=
ϵθ

cosϕt
− tanϕtx

(t). (24)

Considering the numerical error, we get:

ṽ
(t)
θ =

ϵθ(1 + δ)

cosϕt
− tanϕtx

(t) = v
(t)
θ +

ϵθ
cosϕt

δ. (25)

Note that the numerical error term in the above equation
is exactly e(t), proving that e(t) can be interpreted as the
equivalent v-prediction numerical error for an ϵ-prediction
model.

Taking numerical error effect into the v-prediction-based
diffusion loss, we get:

E[(v(t) − ṽ
(t)
θ)2] =E[(v(t) − v

(t)
θ − e(t))2]

=E[(v(t) − v
(t)
θ)2]− 2E[(v(t) − v

(t)
θ)e(t)]

+ E[(e(t))2]. (26)

Due to the fact that numerical error e(t) is independent from
the training loss and that the expectation of e(t) is 0, we get
E[(v(t)−v(t)θ)e(t)] = 0. Therefore, the only numerical error
term is E[(e(t))2]. Given that the standard deviation of ϵθ is
1, and considering that we use bfloat16 as training data
type, which means δ = 1/128, we get

E[(e(t))2] = 1/(128 cos(ϕt))
2 = 1/(1282ᾱt). (27)

This is the theoretical numerical error of the v-prediction
diffusion loss for an ϵ-prediction model.

Figure 8. The impact of CFG scale on image generation quality.

6.4. CFG With v-prediction

From Equation v(t)i =
√
ᾱtϵ −

√
1− ᾱtxi, we can derive

the following equation.

ϵ =
√

1− ᾱ(t)x(t) +
√
ᾱ(t)v (28)

For the CFG of ϵ, it can be simplified as follows.

ϵ =ϵu + ω(ϵc − ϵu)

=
√
1− ᾱ(t)x(t) +

√
ᾱ(t)vu + ω

√
ᾱ(t)(vc − vu)

=
√
1− ᾱ(t)x(t) +

√
ᾱ(t)(vu + ω(vc − vu)) (29)

Ultimately, we obtain v = vu + ω(vc − vu). The CFG of v
and ϵ are equivalent.

6.5. Impact of CFG Scaling
We select models from the second and fourth epochs of the
first stage as starting points for the second stage, train them
for 3 epochs, and then test the MSCOCO FID-30K under
varying CFG intensities. As shown in Fig. 8, our method
achieves better FID scores as the CFG scale increases from
1 to 10. It is worth noting that most probabilistic generative
models typically have a CFG scale between 1.5 and 5. Ad-
ditionally, it is observed that a longer training duration in

Figure 9. Generated images from MMAR-7B after the third training stage (1/2).

the first stage consistently results in better generation out-
comes at all CFG scales.

6.6. Detailed Visual Understanding Evaluation Re-
sults

A total of 18 visual understanding benchmarks from
VLMEvalKit [12] are used to evaluate MMAR models
comprehensively. The evaluation is also conducted on the
existing joint image-text probabilistic models using the pub-
licly available checkpoints34. The detailed evaluation re-
sults are shown in Table 6. All scores have been scaled to a

3https://huggingface.co/facebook/chameleon-7b
4https://huggingface.co/showlab/show-o-w-clip-vit

range of 0 to 100 except that we show the original score of
MME benchmarks. The average score is calculated on the
normalized score of all the benchmarks including MME.

6.7. Examples:Image Generation Sample

In Fig.9, 10, we showcase some generated examples from
MMAR-7B after the third stage training, featuring animals,
plants, real-world scenes, artistic scenes, and counterfactual
themes.

6.8. Numerical Error Empirical Validation

We provide direct empirical demonstration using a 2D
chessboard distribution (class-conditioned quadrant map-

Figure 10. Generated images from MMAR-7B after the third training stage (2/2).

abnormal

samples (0.2%)

(a) v-prediction + bf16

 (all 1M samples)

(b) 𝜖-prediction + bf16

(all 10k samples)

(c) 𝜖-prediction + fp32

(all 10k samples)

abnormal

samples (0.04%)

normal samples

(99.8%)

normal samples

(99.96%)

Figure 11. Diffusion sampling results with different prediction
targets and training precision. Figures are scaled differently to
include all generated samples.

ping). As Fig.11 reveals: (1) v-prediction maintains stabil-
ity even with bf16 precision at scale (1M samples, Fig.(a)),
achieving < 10−6 token error rate. (2) ϵ-prediction ex-

hibits visible artifacts (Fig.(b),(c)) with 0.2% token error
rate (bf16), equivalent to 51.2% image-level failure for 256-
token images. (3) Precision elevation (fp32) reduces arti-
facts to 0.04%. These observations validate v-prediction’s
critical role in mitigating low-precision training risks.

